Efficacy of Virtual Reality-Based Gamified Interventions versus Conventional Therapy for Improving Motor Function in Children with Cerebral Palsy: A Randomized Controlled Trial
VR-Based Rehabilitation in Children with CP
Keywords:
Cerebral palsy, Gamification, Motor skills, Pediatrics, Rehabilitation, Virtual realityAbstract
Background: Cerebral palsy continues to be the leading cause of motor disability during childhood, impacting balance control, walking ability, and hand function. Virtual reality technology presents an engaging, task-focused rehabilitation approach that may enhance motor skill acquisition and treatment adherence beyond what traditional therapy achieves. To assess whether virtual reality-based gamified therapy delivered by occupational and physical therapists produces better outcomes than traditional therapy for balance, walking, and hand skills in children diagnosed with cerebral palsy.
Methods: This single-blind randomized trial enrolled 84 children (ages 6-14) with spastic cerebral palsy functioning at GMFCS levels I-III. Children were randomly divided into virtual reality treatment (n=42) or traditional therapy (n=42) groups receiving 12 weeks of intervention (three 45-minute sessions weekly). Main measurements included the Pediatric Balance Scale, 10-Meter Walk Test, and Jebsen-Taylor Hand Function Test. Additional measurements examined upper extremity quality and patient involvement.
Results: Children receiving virtual reality therapy showed markedly better progress on the Pediatric Balance Scale (mean difference: 4.8 points, 95% CI: 3.2-6.4, p<0.001), walking speed (0.12 m/s faster, 95% CI: 0.08-0.16, p<0.001), and hand function testing (8.3 seconds faster completion, 95% CI: 5.1-11.5, p<0.001) when compared to traditional treatment. Engagement levels were substantially higher with virtual reality (p<0.001). No serious safety concerns emerged.
Conclusion: Virtual reality-based gamified therapy administered by qualified therapists produces significantly better motor function improvements and higher patient involvement compared to traditional approaches in children with cerebral palsy, supporting its incorporation into routine rehabilitation services.
References
Sadowska M, Sarecka-Hujar B, Kopyta I. Cerebral palsy: current opinions on definition, epidemiology, risk factors, classification and treatment options. Neuropsychiatr Dis Treat. 2020 Jun 12;16:1505-18.
DOI: www.doi.org/10.2147/NDT.S235165
Patel DR, Neelakantan M, Pandher K, Merrick J. Cerebral palsy in children: a clinical overview. Transl Pediatr. 2020 Feb;9(Suppl 1):S125.
DOI: www.doi.org/10.21037/tp.2020.01.01
Novak I, Morgan C, Fahey M, Finch-Edmondson M, Galea C, Hines A, et al. State of the evidence traffic lights 2019: systematic review of interventions for preventing and treating children with cerebral palsy. Curr Neurol Neurosci Rep. 2020 Feb;20(2):3.
DOI: www.doi.org/10.1007/s11910-020-1022-z
Novak I, Morgan C, Adde L, Blackman J, Boyd RN, Brunstrom-Hernandez J, et al. Early, accurate diagnosis and early intervention in cerebral palsy: advances in diagnosis and treatment. JAMA Pediatr. 2017;171(9):897-907.
DOI: www.doi.org/10.1001/jamapediatrics.2017.1689
Das SP, Ganesh GS. Evidence-based approach to physical therapy in cerebral palsy. Indian J Orthop. 2019 Feb;53(1):20-34.
DOI: www.doi.org/10.4103/ortho.IJOrtho_241_17
Novak I, Honan I. Effectiveness of paediatric occupational therapy for children with disabilities: a systematic review. Aust Occup Ther J. 2019 Jun;66(3):258-73.
DOI: www.doi.org/10.1111/1440-1630.12573
Won AS, Bailey J, Bailenson J, Tataru C, Yoon IA, Golianu B. Immersive virtual reality for pediatric pain. Children (Basel). 2017 Jun 23;4(7):52.
DOI: www.doi.org/10.3390/children4070052
Biddiss E, Chan-Viquez D, Cheung ST, King G. Engaging children with cerebral palsy in interactive computer play-based motor therapies: theoretical perspectives. Disabil Rehabil. 2021 Jan 2;43(1):133-47.
DOI: www.doi.org/10.1080/09638288.2019.1613681
Ravi DK, Kumar N, Singhi P. Effectiveness of virtual reality rehabilitation for children and adolescents with cerebral palsy: an updated evidence-based systematic review. Physiotherapy. 2017 Sep 1;103(3):245-58.
DOI: www.doi.org/10.1016/j.physio.2016.08.004
Laver KE, Lange B, George S, Deutsch JE, Saposnik G, Crotty M. Virtual reality for stroke rehabilitation. Stroke. 2018;49(4):e160-e161.
DOI: www.doi.org/10.1002/14651858.CD008349.pub4
Massetti T, Da Silva TD, Crocetta TB, Guarnieri R, De Freitas BL, Bianchi Lopes P, et al. The clinical utility of virtual reality in neurorehabilitation: a systematic review. J Cent Nerv Syst Dis. 2018 Nov;10:1179573518813541.
DOI: www.doi.org/10.1177/1179573518813541
Steuer J. Defining virtual reality: dimensions determining telepresence. J Commun. 1992 Dec 1;42(4):73-93.
DOI: www.doi.org/10.1111/j.1460-2466.1992.tb00812.x
Deterding S, Dixon D, Khaled R, Nacke L. From game design elements to gamefulness: defining "gamification". In: Proceedings of the 15th International Academic MindTrek Conference: Envisioning Future Media Environments; 2011 Sep 28; Tampere, Finland. New York: ACM; 2011. p. 9-15. DOI: www.doi.org/10.1145/2181037.2181040
Burdea GC, Cioi D, Kale A, Janes WE, Ross SA, Engsberg JR. Robotics and gaming to improve ankle strength, motor control, and function in children with cerebral palsy—a case study series. IEEE Trans Neural Syst Rehabil Eng. 2012 Jul 3;21(2):165-73.
DOI: www.doi.org/10.1109/TNSRE.2012.2206055
Schmidt RA, Lee TD, Winstein C, Wulf G, Zelaznik HN. Motor control and learning: a behavioral emphasis. Champaign (IL): Human Kinetics; 2018.
DOI: www.doi.org/10.5040/9781492595632
Chen J, Or CK, Chen T. Effectiveness of using virtual reality–supported exercise therapy for upper extremity motor rehabilitation in patients with stroke: systematic review and meta-analysis of randomized controlled trials. J Med Internet Res. 2022;24(6):e24111.
DOI: www.doi.org/10.2196/24111
Viderman D, Tapinova K, Dossov M, Seitenov S, Abdildin YG. Virtual reality for pain management: an umbrella review. Front Med (Lausanne). 2023 Jul 14;10:1203670.
DOI: www.doi.org/10.3389/fmed.2023.1203670
Worlikar H, Coleman S, Kelly J, O'Connor S, Murray A, McVeigh T, et al. Mixed reality platforms in telehealth delivery: scoping review. JMIR Biomed Eng. 2023 Mar 24;8:e42709.
DOI: www.doi.org/10.2196/42709
Sigrist R, Rauter G, Riener R, Wolf P. Augmented visual, auditory, haptic, and multimodal feedback in motor learning: a review. Psychon Bull Rev. 2013 Feb;20(1):21-53.
DOI: www.doi.org/10.3758/s13423-012-0333-8
Maier M, Ballester BR, Verschure PF. Principles of neurorehabilitation after stroke based on motor learning and brain plasticity mechanisms. Front Syst Neurosci. 2019 Dec 17;13:74.
DOI: www.doi.org/10.3389/fnsys.2019.00074
Mariani MM, Hashemi N, Wirtz J. Artificial intelligence empowered conversational agents: a systematic literature review and research agenda. J Bus Res. 2023 Jun 1;161:113838.
DOI: www.doi.org/10.1016/j.jbusres.2023.113838
Chen Y, Fanchiang HD, Howard A. Effectiveness of virtual reality in children with cerebral palsy: a systematic review and meta-analysis of randomized controlled trials. Phys Ther. 2018 Jan;98(1):63-77.
DOI: www.doi.org/10.1093/ptj/pzx107
Fernández-Vázquez D, Navarro-López V, Cano-de-la-Cuerda R, Palacios-Ceña D, Espada M, Bores-García D, et al. Influence of virtual reality and gamification combined with practice teaching style in physical education on motor skills and students' perceived effort: a mixed-method intervention study. Sustainability. 2024 Feb 14;16(4):1584.
DOI: www.doi.org/10.3390/su16041584
Faccioli S, Pagliano E, Ferrari A, Maghini C, Siani MF, Sgherri G, et al. Evidence-based management and motor rehabilitation of cerebral palsy children and adolescents: a systematic review. Front Neurol. 2023 May 25;14:1171224.
DOI: www.doi.org/10.3389/fneur.2023.1171224
Hamilton D, McKechnie J, Edgerton E, Wilson C. Immersive virtual reality as a pedagogical tool in education: a systematic literature review of quantitative learning outcomes and experimental design. J Comput Educ. 2021 Mar;8(1):1-32.
DOI: www.doi.org/10.1007/s40692-020-00169-2
Wollesen B, Janssen TI, Müller H, Voelcker-Rehage C. Effects of cognitive-motor dual task training on cognitive and physical performance in healthy children and adolescents: a scoping review. Acta Psychol (Amst). 2022 Apr 1;224:103498.
DOI: www.doi.org/10.1016/j.actpsy.2022.103498
Kaya Keles CS, Ates F. Botulinum toxin intervention in cerebral palsy-induced spasticity management: projected and contradictory effects on skeletal muscles. Toxins (Basel). 2022 Nov 8;14(11):772.
DOI: www.doi.org/10.3390/toxins14110772
Taylor NE, Sand PL, Jebsen RH. Evaluation of hand function in children. Arch Phys Med Rehabil. 1973 Mar 1;54(3):129-35.
DeMatteo C, Law M, Russell D, Pollock N, Rosenbaum P, Walter S. The reliability and validity of the Quality of Upper Extremity Skills Test. Phys Occup Ther Pediatr. 1993 Jan 1;13(2):1-8.
DOI: www.doi.org/10.1080/J006v13n02_01
Haley SM, Coster WJ, Dumas HM, Fragala-Pinkham MA, Moed R. PEDI-CAT: development, standardization and administration manual. Boston: Boston University; 2012. p. 648-57.
DOI: www.doi.org/10.1111/j.1469-8749.2011.04107.x
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Iqra Wahaj, Amenah Salim, Faraz Tipu, Noor-us- Saba, Akbar Mughal

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.






