Multivariate Prediction of NICU Admission Based on Maternal and Intrapartum Risk Factors

Multivariate Model for NICU Admission Risk

Authors

  • Dr. Sadif Wagan Shaikh Zayed Women Hospital, Larkana
  • Dr. Shagufta Wagan Chandka Medical Hospital
  • Dr. Aisha Wagan Chandka Medical Hospital

Keywords:

Cesarean section, Hypertensive crisis, Intensive Care Units, Infant, Logistic models, Newborn, Pregnancy outcome, Risk factors

Abstract

Background: Neonatal intensive care unit (NICU) admission is a significant outcome of the process of providing perinatal care. This outcome often correlates with severe morbidity of the newborns. Awareness of risk factors concerning the mother and pregnancy generally helps to address the situation appropriately. To determine the maternal and obstetric predictors independently associated with NICU admission in singleton deliveries using multivariate statistical analysis.

Methods: This was a retrospective, analytical cross-sectional study of 2,511 singleton deliveries. Bivariate comparisons were conducted using chi-square tests and t-tests, followed by multivariate logistic regression to identify independent predictors. Odds ratios (OR), confidence intervals (CI), area under the ROC curve (AUC), and variance inflation factors (VIF) were reported.

Results: NICU admissions occurred in 322 neonates (12.8%). The primary predictors of NICU admissions, after adjustment for all other terms, included cesarean delivery, with an AOR of 48.7; advanced maternal age >35 years, with an AOR of 18.2; prolonged labor >12 hours, with an AOR of 8.1; preterm birth, with an AOR of 6.6; and hypertensive crisis, with an AOR of 3.7. The model demonstrated good prediction accuracy with an AUC of 0.95.

Conclusion: Advanced maternal age, hypertensive crisis, cesarean delivery, preterm birth, and long labor have emerged as significant predictors of NICU admission.

DOI: https://doi.org/10.59564/amrj/04.01/003 

Author Biographies

Dr. Sadif Wagan, Shaikh Zayed Women Hospital, Larkana

Women Medical Officer, Department of Gynaecology and Obstetrics

Dr. Shagufta Wagan, Chandka Medical Hospital

Medical House Officer, Department of Gynaecology and Obstetrics

Dr. Aisha Wagan, Chandka Medical Hospital

Medical House Officer, Department of Gynaecology and Obstetrics

References

World Health Organization. "Every day, 675 newborns and 27 mothers die in Pakistan – WHO calls for urgent action". WHO EMRO. April 7, 2025. Available from: https://www.emro.who.int/pak/pakistan-news/every-day-675-newborns-and-27-mothers-die-in-pakistan-who-calls-for-urgent-action.html

Muzzamil M, Nisa M, Raza S. The survival rate of neonates in Pakistan: Problems in health care access, quality and recommendations. Health Promot Perspect. 2022 Dec 31;12(4):355-357. PMID: 36852197; PMCID: PMC9958232. doi:10.34172/hpp.2022.46

Yihong Wei, Shuai Xu, Wenjuan Sun, and Fanzhen Hong. “Development and vali- dation of a prenatal predictive nomogram for the risk of NICU admission in infants born to Chinese mothers over 35 years of age: a retrospective cohort study”. In: BMC Pregnancy and Childbirth 24.1 2024, p. 390. doi:10.1186/s12884-024-06582-0.

Filipa Ramalho Rocha, Tiago Neto Gon¸calves, Maria Inˆes Xavier-Ferreira, Francisco Laranjeira, Gon¸calo Meleiro Magalha˜es, Maria Inˆes Lopes, Marta Sousa, Daniela Pestana, E´lia Fernandes, Ana Chung, Ana Berdeja, Gon¸calo Cassiano Santos, Nata´lia Marto, Anto´nio Messias, and Jorge Lima. “Obstetric Intensive Care Admissions and Neonatal Outcomes: 15 Years of Experience from a Single Center”. In: Medicina 60.12 2024. doi:10.3390/medicina60121937.

Hayfaa Wahabi, Hala Elmorshedy, Hanadi Bakhsh, Samia Ahmed, Raghad E. Al- Subki, Amsha S. Aburasyin, Amel Fayed, and Amal Mahmoud Ibrahim Goda. “Pre- dictors and outcomes of premature rupture of membranes among pregnant women admitted to a teaching hospital in Saudi Arabia: a cohort study”. In: BMC Pregnancy and Childbirth 24.1 2024, p. 850. doi:10.1186/s12884-024-07020-x.

Recep Taha A˘gaog˘lu, O¨ zge O¨ ztu¨rk, Can Ozan Ulusoy, Figen Gu¨nday, Dilara Sarikaya Kurt, Meltem Aksu, Burak Hizli, and Kadriye Yakut Yu¨cel. “Perinatal outcomes and predictors of neonatal mortality in preterm premature rupture of membranes: a tertiary center experience”. In: BMC Pregnancy and Childbirth 25.1 2025, p. 585. doi:10.1186/s12884-025-07688-9.

Nihar Ranjan Panda, Kamal Lochan Mahanta, Jitendra Kumar Pati, and Tapasi Pati. “Development and Validation of Prediction Model for Neonatal Intensive Care Unit (NICU) Admission Using Machine Learning and Multivariate Statistical Approach”. In: The Journal of Obstetrics and Gynecology of India 75.1 Apr. 2025. Published online: 3 July 2024, pp. 383–391. doi:10.1007/s13224-024-02009-0.

Khasawneh W, Obeidat N, Yusef D, Alsulaiman JW. The impact of cesarean section on neonatal outcomes at a university-based tertiary hospital in Jordan. BMC Pregnancy and Childbirth. 2020 Jun 1;20(1):335.. doi:10.1186/s12884-020-03027-2.

Ratiu D, Sauter F, Gilman E, Ludwig S, Ratiu J, Mallmann-Gottschalk N, Mallmann P, Gruttner B, Baek S. Impact of advanced maternal age on maternal and neonatal outcomes. in vivo. 2023 Jul 1;37(4):1694-702. 37.4 2023. PMC10347939, pp. 1694–1702. doi:10.21873/invivo.13256.

Liu T, Gao R, Liu Y, Zhao K, Su X, Wong HC, Li L, Xie B, Huang Y, Qiu C, He J. Hypertensive disorders of pregnancy and neonatal outcomes in twin vs. singleton pregnancies after assisted reproductive technology. Frontiers in Pediatrics. 2022 Sep 2;10:839882.. doi:10.3389/fped.2022.839882.

Mishra P, Pandey CM, Singh U, Gupta A, Sahu C, Keshri A. Descriptive statistics and normality tests for statistical data. Annals of cardiac anaesthesia. 2019 Jan 1;22(1):67-72. doi:10.4103/aca.ACA˙157˙18.

Masuadi E, Mohamud M, Almutairi M, Alsunaidi A, Alswayed AK, Aldhafeeri OF, Almutairi MB. Trends in the usage of statistical software and their associated study designs in health sciences research: a bibliometric analysis. Cureus. 2021 Jan 11;13(1). doi:10.7759/cureus.12639.

Davide Chicco, Andrea Sichenze, and Giuseppe Jurman. "A Simple Guide to the Use of Student's t-test, Mann-Whitney U test, Chi-squared test, and Kruskal-Wallis test in Biostatistics". In: BioData Mining 18:56 (2025). doi:10.1186/s13040-025-00465-6.

R. M. Montaña, Á. Roco-Videla, A. R. Nieves, and S. V. Flores. "Chi-square Test of Homogeneity in Clinical Studies: A Tool for Analyzing Differences Between Treatments". In: Semergen 51.1 (2025), p. 102332. doi:10.1016/j.semerg.2024.102332

Tenny S, Hoffman MR. Odds Ratio. [Updated 2023 May 22]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK431098/

Efthimiou O, Seo M, Chalkou K, Debray T, Egger M, Salanti G et al. Developing clinical prediction models: a step-by-step guide BMJ 2024; 386 :e078276. doi:10.1136/bmj-2023-078276.

Çorbacıoğlu, Şeref Kerem1,,*; Aksel, Gökhan2. Receiver operating characteristic curve analysis in diagnostic accuracy studies: A guide to interpreting the area under the curve value. Turkish Journal of Emergency Medicine 23(4):p 195-198, Oct–Dec 2023. doi: 10.4103/tjem.tjem_182_23.

Hassanzad M, Hajian-Tilaki K. Methods of determining optimal cut-point of diagnostic biomarkers with application of clinical data in ROC analysis: an update review. BMC medical research methodology. 2024 Apr 8;24(1):84.. doi:10.1186/s12874-024-02198-2.

Halil I. Dertli, Daniel B. Hayes, and Troy G. Zorn. “Effects of Multicollinearity and Data Granularity on Regression Models of Stream Temperature”. In: Journal of Hy- drology 639 2024, p. 131572. doi:10.1016/j.jhydrol.2024.131572.

Arturs Kalnins and Kimberly Praitis Hill. “The VIF Score. What is it Good For? Absolutely Nothing”. In: Organizational Research Methods 28.1 2023. Originally pub- lished 2025, pp. 58–75. doi:10.1177/10944281231216381.

Flavius George Socol, Elena Bernad, Marius Craina, Simona-Alina Abu-Awwad, Brenda-Cristiana Bernad, Ioana Denisa Socol, Ahmed Abu-Awwad, Simona Sorina Farcas, Daniel Laurentiu Pop, Daniela Gurgus, and Nicoleta Ioana Andreescu. “Health Impacts of Pre-eclampsia: A Comprehensive Analysis of Maternal and Neonatal Out- comes”. In: Medicina 60.9 2024, p. 1486. doi:10.3390/medicina60091486.

Shailesh Wandile, Manoj Waghmode, Punam Uke, Jayant D. Vagha, Chaitanya Ku- mar Javvaji, and Ajinkya Wazurkar. “The Impact of Maternal Risk Factors on Neona- tal Morbidity and Mortality in a Tertiary Care Neonatal Intensive Care Unit (NICU): An Observational Study”. In: Cureus 16.7 July 2024, e65714. doi:10.7759/cureus.65714.

A. N. Battarbee, A. V. Glover, C. J. Vladutiu, C. Gyamfi-Bannerman, S. Aliaga, T. A. Manuck, and K. A. Boggess. “Risk Factors Associated with Prolonged Neona- tal Intensive Care Unit Stay after Threatened Late Preterm Birth”. In: The Journal of Maternal-Fetal & Neonatal Medicine 34.7 2019, pp. 1042–1047. doi:10.1080/14767058.2019.162377.

Samantha G. Bromfield, Qinli Ma, Andrea DeVries, Tiffany Inglis, and Aliza S. Gor- don. “The Association Between Hypertensive Disorders During Pregnancy and Ma- ternal and Neonatal Outcomes: A Retrospective Claims Analysis”. In: BMC Preg- nancy and Childbirth 23.1 2023, p. 514. doi:10.1186/s12884-023-05818-9.

Abebaw Yeshambel Alemu, Getaneh Mulualem Belay, Mengistu Berhanu, and Biniam Minuye. “Determinants of Neonatal Mortality at Neonatal Intensive Care Unit in Northeast Ethiopia: Unmatched Case-Control Study”. In: Tropical Medicine and Health 48.1 2020, p. 40. doi:10.1186/s41182-020-00232-9.

Khasawneh, Wasim; Sindiani, Amer; Alsheyab, Safa. Admission and respiratory outcomes of late preterm infants in the setting of high cesarean section deliveries: A single center retrospective analysis. International Journal of Pediatrics and Adolescent Medicine 10(4):p 88-94, December 2023. doi: 10.4103/IJPAM.IJPAM_12_24.

Narges Malakooti, Vahid Mehrnoush, Fatemeh Abdi, Mohammad Sadegh Vahidi Farashah, and Fatemeh Darsareh. “Development of a Machine Learning Model to Identify the Predictors of the Neonatal Intensive Care Unit Admission”. In: Scien- tific Reports 15.1 2025, p. 20914. doi:10.1038/s41598-025-06651-0.

Jianfang Ge, Xinyue Gu, Shanyu Jiang, Ling Yang, Xiaoyan Li, Siyuan Jiang, Beibei Jia, Caihua Chen, Yun Cao, Shoo Lee, Xiaopeng Zhao, Yong Ji, and Wenhao Zhou. “Impact of Hypertensive Disorders of Pregnancy on Neonatal Outcomes Among In- fants Born at 24+0–31+6 Weeks’ Gestation in China: A Multicenter Cohort Study”. In: Frontiers in Pediatrics 11 2023. doi:10.3389/fped.2023.1005383.

Cuixiang Shao, Qi Chen, Siwen Tang, Chaowen Wang, and Renjuan Sun. “Develop- ment, Validation and Clinical Utility of a Risk Prediction Model for Maternal and Neonatal Adverse Outcomes in Pregnant Women with Hypothyroidism”. In: Journal of Multidisciplinary Healthcare 17 2024, pp. 1953–1969. doi:10.2147/JMDH.S457818.

Geremu Huka, Samson Gebremedhin, Selamawit Wodajo, and Assefa Demissie. “Pre- dictors of time to death among preterm neonates admitted to neonatal intensive care units at public hospitals in southern Ethiopia”. In: PLOS ONE 18.10 2023, e0283143. doi:10.1371/journal.pone.0283143.

Downloads

Published

2026-01-30