TRPML1 regulates Mitochondrial and Lysosomal mediated Cell Death in Triple-Negative Breast Cancer Cell Line
Cytotoxic Effects of ML-SA5 in TNBC Cells
Keywords:
Breast neoplasms, Lysosomes, Molecular targeted therapy, Mitochondria, Reactive oxygen species, Triple-negative necrosisAbstract
Background: Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype that expresses neither estrogen receptors, progesterone receptors, nor HER2; therefore, limiting the current available treatments. Recent evidence shows that the lysosomal cation channel TRPML1 is overexpressed in TNBC cells whereas minimal in normal cells hence can be targeted for anticancer therapy. The objective of the present study is to determine whether Mucolipin synthetic agonist 5 (ML-SA5), a small-molecule TRPML1 agonist, selectively induces cell death in MDA-MB-231 cells and to elucidate the cellular pathways involved in this process
Methods: This study was conducted in MDRL 1 and 2 Lab, Ziauddin University, Clifton campus and this is in-vitro experimental study completed in 8 months. The cytotoxicity of MDA-MB 231 cells exposed to various doses of ML-SA5 was studied over a different time duration using the MTT assay. Cell death was further analyzed by propidium iodide and annexin V-FITC staining. Changes in mitochondrial and lysosomal activity and intracellular reactive oxygen species were evaluated.
Results: ML-SA5 induced dose-dependent cytotoxicity with IC₅₀ values in the lower micromolar range (6.8 μM). PI staining indicated also confirmed cell death, with minimal apoptosis. Mitochondrial staining revealed altered morphology and compromised function. Lysosomal labeling showed enlarged lysosomes suggesting impaired lysosomal integrity. A significant rise in ROS levels was observed, indicating oxidative stress.
Conclusion: The activation of TRPML1 by ML-SA5 leads to increased oxidative stress and damage to mitochondria and lysosomes, resulting in cell death in TNBC cells.
DOI: https://doi.org/10.59564/amrj/04.01/002
References
Wilkinson L, Gathani T. Understanding breast cancer as a global health concern. Br J Radiol [Internet]. 2022;95(1130):20211033. Available from: http://dx.doi.org/10.1259/bjr.20211033
Zhao H. The prognosis of invasive ductal carcinoma, lobular carcinoma and mixed ductal and lobular carcinoma according to molecular subtypes of the breast. Breast Cancer [Internet]. 2021;28(1):187–95. Available from: http://dx.doi.org/10.1007/s12282-020-01146-4
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin [Internet]. 2021;71(3):209–49. Available from: http://dx.doi.org/10.3322/caac.21660
Al-Thoubaity FK. Molecular classification of breast cancer: A retrospective cohort study. Ann Med Surg (Lond) [Internet]. 2020;49:44–8. Available from: http://dx.doi.org/10.1016/j.amsu.2019.11.021
Baranova A, Krasnoselskyi M, Starikov V, Kartashov S, Zhulkevych I, Vlasenko V, et al. Triple-negative breast cancer: current treatment strategies and factors of negative prognosis. J Med Life [Internet]. 2022;15(2):153–61. Available from: http://dx.doi.org/10.25122/jml-2021-0108
Zhao W, Ren W, Huang D, Sang Y, Cao L, Huang J. Cell structure and physiology. In: Cell Movement in Health and Disease. Elsevier; 2022. p. 3–16.
Tang T, Yang Z-Y, Wang D, Yang X-Y, Wang J, Li L, et al. The role of lysosomes in cancer development and progression. Cell Biosci [Internet]. 2020;10(1):131. Available from: http://dx.doi.org/10.1186/s13578-020-00489-x
Feng J, Wang Z-X, Bin J-L, Chen Y-X, Ma J, Deng J-H, et al. Pharmacological approaches for targeting lysosomes to induce ferroptotic cell death in cancer. Cancer Lett [Internet]. 2024;587(216728):216728. Available from: http://dx.doi.org/10.1016/j.canlet.2024.216728
Reisbeck L, Linder B, Tascher G, Bozkurt S, Weber KJ, Herold-Mende C, et al. The iron chelator and OXPHOS inhibitor VLX600 induces mitophagy and an autophagy-dependent type of cell death in glioblastoma cells. Am J Physiol Cell Physiol [Internet]. 2023;325(6):C1451–69. Available from: http://dx.doi.org/10.1152/ajpcell.00293.2023
Serrano-Puebla A, Boya P. Lysosomal membrane permeabilization as a cell death mechanism in cancer cells. Biochem Soc Trans [Internet]. 2018;46(2):207–15. Available from: http://dx.doi.org/10.1042/BST20170130
Santoni G, Morelli MB, Amantini C, Nabissi M, Santoni M, Santoni A. Involvement of the TRPML mucolipin channels in viral infections and anti-viral innate immune responses. Front Immunol [Internet]. 2020;11:739. Available from: http://dx.doi.org/10.3389/fimmu.2020.00739
Xu M, Dong RY, Wang P, Dai E, Dong X-P. Physiological and pathological functions of TRPML1. In: TRP-Mediated Signaling. Boca Raton: CRC Press; 2024. p. 107–30.
Pan Y, Zhao Q, He H, Qi Y, Bai Y, Zhao J, et al. TRPML1 as a potential therapeutic target for triple-negative breast cancer: a review. Front Oncol [Internet]. 2023;13:1326023. Available from: http://dx.doi.org/10.3389/fonc.2023.1326023
Liu HY, Gale JR, Reynolds IJ, Weiss JH, Aizenman E. The multifaceted roles of zinc in neuronal mitochondrial dysfunction. Biomedicines [Internet]. 2021;9(5):489. Available from: http://dx.doi.org/10.3390/biomedicines9050489
Qi J, Xing Y, Liu Y, Wang M-M, Wei X, Sui Z, et al. MCOLN1/TRPML1 finely controls oncogenic autophagy in cancer by mediating zinc influx. Autophagy [Internet]. 2021;17(12):4401–22. Available from: http://dx.doi.org/10.1080/15548627.2021.1917132
Almasi S, Kennedy BE, Yoast RE, Emrich SM, Trebak M, Hiani YE. The lysosomal TRPML1 channel promotes breast cancer survival by supporting mitochondrial function and cellular metabolism [Internet]. bioRxiv. 2020. Available from: http://dx.doi.org/10.1101/2020.09.04.283242
Wang W, Gao Q, Yang M, Zhang X, Yu L, Lawas M, et al. Up-regulation of lysosomal TRPML1 channels is essential for lysosomal adaptation to nutrient starvation. Proc Natl Acad Sci U S A [Internet]. 2015;112(11):E1373-81. Available from: http://dx.doi.org/10.1073/pnas.1419669112
Marini M, Titiz M, Souza Monteiro de Araújo D, Geppetti P, Nassini R, De Logu F. TRP channels in cancer: Signaling mechanisms and translational approaches. Biomolecules [Internet]. 2023;13(10):1557. Available from: http://dx.doi.org/10.3390/biom13101557
Siow WX, Kabiri Y, Tang R, Chao Y-K, Plesch E, Eberhagen C, et al. Lysosomal TRPML1 regulates mitochondrial function in hepatocellular carcinoma cells. J Cell Sci [Internet]. 2022;135(6). Available from: http://dx.doi.org/10.1242/jcs.259455
Kendall RL, Holian A. The role of lysosomal ion channels in lysosome dysfunction. Inhal Toxicol [Internet]. 2021;33(2):41–54. Available from: http://dx.doi.org/10.1080/08958378.2021.1876188
Xu M, Almasi S, Yang Y, Yan C, Sterea AM, Rizvi Syeda AK, et al. The lysosomal TRPML1 channel regulates triple negative breast cancer development by promoting mTORC1 and purinergic signaling pathways. Cell Calcium [Internet]. 2019;79:80–8. Available from: http://dx.doi.org/10.1016/j.ceca.2019.02.010
Du W, Gu M, Hu M, Pinchi P, Chen W, Ryan M, et al. Lysosomal Zn2+ release triggers rapid, mitochondria-mediated, non-apoptotic cell death in metastatic melanoma. Cell Rep [Internet]. 2021;37(3):109848. Available from: http://dx.doi.org/10.1016/j.celrep.2021.109848
Peng W, Wong YC, Krainc D. Mitochondria-lysosome contacts regulate mitochondrial Ca2+ dynamics via lysosomal TRPML1. Proc Natl Acad Sci U S A [Internet]. 2020;117(32):19266–75. Available from: http://dx.doi.org/10.1073/pnas.2003236117
Feng X, Cai W, Li Q, Zhao L, Meng Y, Xu H. Activation of lysosomal Ca2+ channels mitigates mitochondrial damage and oxidative stress. J Cell Biol [Internet]. 2025;224(1). Available from: http://dx.doi.org/10.1083/jcb.202403104
Morciano G, Naumova N, Koprowski P, Valente S, Sardão VA, Potes Y, et al. The mitochondrial permeability transition pore: an evolving concept critical for cell life and death. Biol Rev Camb Philos Soc [Internet]. 2021;96(6):2489–521. Available from: http://dx.doi.org/10.1111/brv.12764
Zhang H-L, Hu B-X, Ye Z-P, Li Z-L, Liu S, Zhong W-Q, et al. TRPML1 triggers ferroptosis defense and is a potential therapeutic target in AKT-hyperactivated cancer. Sci Transl Med [Internet]. 2024;16(753):eadk0330. Available from: http://dx.doi.org/10.1126/scitranslmed.adk0330
Nasb M, Kirberger M, Chen N. Molecular processes and regulation of autophagy. In: Exercise, Autophagy and Chronic Diseases. Singapore: Springer Singapore; 2021. p. 1–27.
Rosencrans WM, Rajendran M, Bezrukov SM, Rostovtseva TK. VDAC regulation of mitochondrial calcium flux: From channel biophysics to disease. Cell Calcium [Internet]. 2021;94(102356):102356. Available from: http://dx.doi.org/10.1016/j.ceca.2021.102356
Mdpi.com. [cited 2025 Dec 24]. Available from: https://www.mdpi.com/2073-4409/10/1/125
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Alfred Henry, Rehan Imad, Saira Amir, Shafaq Saeed Roghay, Amna Bibi, Salman Ahmed Khan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.






