The Molecular Pathways of Diosmetin: A Flavonoid’s Role in Preventing Chronic Diseases

Molecular Insights into Diosmetin

Authors

Keywords:

Diosmetin, Flavonoids, Anti-Diabetic, Anti-Inflammatory, Antioxidant, Neuroprotective, Molecular Pathways

Abstract

Diosmetin is a flavonoid predominantly found in citrus fruits that has recently attracted research interest as a potential candidate for preventing chronic diseases such as diabetes, cardiovascular diseases, neurodegeneration, and inflammation. This review aimed to analyze the molecular mechanisms underlying diosmetin's anti-diabetic, anti-inflammatory, antioxidative, and neuroprotective activities. A comprehensive literature search was performed on studies published between 2000 and 2024 using databases including PubMed, Scopus, and Google Scholar. Diosmetin was found to improve insulin sensitivity by modulating the PI3K/Akt and AMPK pathways and to exert strong anti-inflammatory effects by inhibiting NF-κB and COX-2. As an antioxidant, diosmetin activates the Nrf2 pathway through the expression of antioxidant enzymes such as superoxide dismutase and glutathione peroxidase. Additionally, diosmetin protects neurons from oxidative stress and neuroinflammation by regulating multiple cell survival and inflammation pathways. Compared to other flavonoids such as quercetin and luteolin, diosmetin appears to provide enhanced benefits when combined with other compounds. The purpose of this review was to summarize the molecular mechanisms and therapeutic applications of diosmetin.

DOI: https://doi.org/10.59564/amrj/03.02/013

Author Biographies

Saviya Kashif, Ziauddin University

M.Phil Student in Molecular Modeicine 

Abdul Hameed, Ziauddin University, Karachi, Pakistan

Associate Professor, Department of Molecular Medicine

 

References

Ramesh P, Jagadeesan R, Sekaran S, Dhanasekaran A, Vimalraj S. Flavonoids: classification, function, and molecular mechanisms involved in bone remodelling. Front Endocrinol. 2021 Nov 23;12:779638.

DOI: https://www.doi.org/10.3389/fendo.2021.779638

Nkembo AT. Flavonoids' Classification and Their Applications as Nutraceuticals. In: Flavonoids and Anti-Aging. CRC Press; 2023 Mar 15. p. 23–44.

DOI: https://www.doi.org/10.1201/9781003337577-2

Chang H, Wang C, Gong L, Zhang Y, Liang C, Liu H. An overview of Fructus Meliae Toosendan: Botany, traditional uses, phytochemistry, pharmacology and toxicology. Biomed Pharmacother. 2023 Jan 1;157:113795.

DOI: https://www.doi.org/10.1016/j.biopha.2022.113795

Barreca D, Mandalari G, Calderaro A, Smeriglio A, Trombetta D, Felice MR, et al. Citrus flavones: An update on sources, biological functions, and health promoting properties. Plants. 2020 Feb 26;9(3):288.

DOI: https://www.doi.org/10.3390/plants9030288

Kesharwani V, Kabra S, Semwal BC, Saini D. Neuroprotective effects of flavonoids. In: Advances in Flavonoids for Human Health and Prevention of Diseases. Apple Academic Press; 2024. p. 95-123.

DOI: https://www.doi.org/10.1201/9781003368281-4

Naskar R, Ghosh A, Bhattacharya R, Chakraborty S. A critical appraisal of geroprotective activities of flavonoids in terms of their bio-accessibility and polypharmacology. Neurochem Int. 2024 Sep 10:105859.

DOI: https://www.doi.org/10.1016/j.neuint.2024.105859

Veselov IM, Vinogradova DV, Maltsev AV, Shevtsov PN, Spirkova EA, Bachurin SO, et al. Mitochondria and oxidative stress as a link between Alzheimer's disease and diabetes mellitus. Int J Mol Sci. 2023 Jan;24(19):14450.

DOI: https://www.doi.org/10.3390/ijms241914450

Pugazhenthi S, Qin L, Reddy PH. Common neurodegenerative pathways in obesity, diabetes, and Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis. 2017 May 1;1863(5):1037-45.

DOI: https://www.doi.org/10.1016/j.bbadis.2016.04.017

Das M, Chakraborty M, Das P, Santra S, Mukherjee A, Das S, et al. System Biology Approaches for Systemic Diseases: Emphasis on Type II Diabetes Mellitus and Allied Metabolism. Biocatal Agric Biotechnol. 2024 Apr 18:103176.

DOI: https://www.doi.org/10.1016/j.bcab.2024.103176

Jota U, Devi S. Diosmin as Antidiabetic Agent: A Comprehensive Mechanistic Approach. Curr Bioact Compd. 2025 Jan 23.

DOI: https://www.doi.org/10.2174/0115734072286946240115091149

Fontana F, Giannitti G, Marchesi S, Limonta P. The PI3K/Akt Pathway and Glucose Metabolism: A Dangerous Liaison in Cancer. Int J Biol Sci. 2024 May 27;20(8):3113-3125.

DOI: https://www.doi.org/10.7150/ijbs.89942

Gong X, Xiong L, Bi C, Zhang B. Diosmetin ameliorate type 2 diabetic mellitus by up-regulating Corynebacterium glutamicum to regulate IRS/PI3K/AKT-mediated glucose metabolism disorder in KK-Ay mice. Phytomedicine. 2021 Jul 1;87:153582.

DOI: https://www.doi.org/10.1016/j.phymed.2021.153582

Huang X, Liu G, Guo J, Su Z. The PI3K/AKT pathway in obesity and type 2 diabetes. Int J Biol Sci. 2018 Aug 6;14(11):1483-1496.

DOI: https://www.doi.org/10.7150/ijbs.27173

Lai MC, Liu WY, Liou SS, Liu IM. Diosmetin targeted at peroxisome proliferator-activated receptor gamma alleviates advanced glycation end products induced neuronal injury. Nutrients. 2022 May 27;14(11):2248.

DOI: https://www.doi.org/10.3390/nu14112248

Entezari M, Hashemi D, Taheriazam A, Zabolian A, Mohammadi S, Fakhri F, et al. AMPK signaling in diabetes mellitus, insulin resistance and diabetic complications: A pre-clinical and clinical investigation. Biomed Pharmacother. 2022 Feb;146:112563.

DOI: https://www.doi.org/10.1016/j.biopha.2021.112563

Moon DO. Plant-Derived Flavonoids as AMPK Activators: Unveiling Their Potential in Type 2 Diabetes Management through Mechanistic Insights, Docking Studies, and Pharmacokinetics. Appl Sci. 2024;14(19):8607.

DOI: https://www.doi.org/10.3390/app14198607

Caro-Orders T, Marín-Royo G, Paso-Ríos L, Jiménez-Castillo L, Moreno JA, Gómez-Guerrero C, et al. The Coming Age of Flavonoids in the Treatment of Diabetic Complications. J Clin Med. 2020;9(2):346.

DOI: https://www.doi.org/10.3390/jcm9020346

Li Z, Liu M, Li J, Yan G, Xu X. Diosmetin alleviates AFB1-induced endoplasmic reticulum stress, autophagy, and apoptosis via PI3K/AKT pathway in mice. Ecotoxicol Environ Saf. 2025 Mar 1;292:117997.

DOI: https://www.doi.org/10.1016/j.ecoenv.2024.117997

Sun Z, Liu K, Liang C, Wen L, Wu J, Liu X, et al. Diosmetin as a promising natural therapeutic agent: In vivo, in vitro mechanisms, and clinical studies. Phytother Res. 2024 Jul;38(7):3660-94.

DOI: https://www.doi.org/10.1002/ptr.8219

Wu S, Pang Y, He Y, Zhang X, Peng L, Guo J, et al. A comprehensive review of natural products against atopic dermatitis: Flavonoids, alkaloids, terpenes, glycosides and other compounds. Biomed Pharmacother. 2021 Aug 1;140:111741.

DOI: https://www.doi.org/10.1016/j.biopha.2021.111741

Guo Q, Jin Y, Chen X, Ye X, Shen X, Lin M, et al. NF-κB in biology and targeted therapy: new insights and translational implications. Signal Transduct Target Ther. 2024;9:53.

DOI: https://www.doi.org/10.1038/s41392-024-01757-9

Barreca MM, Alessandro R, Corrado C. Effects of Flavonoids on Cancer, Cardiovascular and Neurodegenerative Diseases: Role of NF-κB Signaling Pathway. Int J Mol Sci. 2023 May 25;24(11):9236.

DOI: https://www.doi.org/10.3390/ijms24119236

Yang Y, Gong XB, Huang LG, Wang ZX, Wan RZ, Zhang P, et al. Diosmetin exerts anti-oxidative, anti-inflammatory and anti-apoptotic effects to protect against endotoxin-induced acute hepatic failure in mice. Oncotarget. 2017 May 9;8(19):30723-30733.

DOI: https://www.doi.org/10.18632/oncotarget.15413

Zhao L, Tao X, Wang Q, Yu X, Dong D. Diosmetin alleviates neuropathic pain by regulating the Keap1/Nrf2/NF-κB signaling pathway. Biomed Pharmacother. 2024 Jan 1;170:116067.

DOI: https://www.doi.org/10.1016/j.biopha.2023.116067

Mei Z, Du L, Liu X, Chen X, Tian H, Deng Y, et al. Diosmetin alleviated cerebral ischemia/reperfusion injury in vivo and in vitro by inhibiting oxidative stress via the SIRT1/Nrf2 signaling pathway. Food Funct. 2022 Nov;13(1):198-212.

DOI: https://www.doi.org/10.1039/D1FO02579A

Wójciak M, Feldo M, Borowski G, Kubrak T, Płoska A, Sowa I. Diosmin and Diosmetin against Oxidative Stress in Endothelial Cells. Molecules. 2022 Nov;27(23):8232.

DOI: https://www.doi.org/10.3390/molecules27238232

Joshi T, Deepa PR, Sharma PK. Effect of different proportions of phenolics on antioxidant potential: Pointers for bioactive Synergy/Antagonism in foods and nutraceuticals. Proc Natl Acad Sci India Sect B Biol Sci. 2022 Dec;92(4):939-46.

DOI: https://www.doi.org/10.1007/s40011-022-01394-8

Chagas MD, Behrens MD, Moragas-Tellis CJ, Penedo GX, Silva AR, Gonçalves-de-Albuquerque CF. Flavonols and flavones as potential anti‐inflammatory, antioxidant, and antibacterial compounds. Oxid Med Cell Longev. 2022;2022(1):9966750.

DOI: https://www.doi.org/10.1155/2022/9966750

Teleanu DM, Niculescu AG, Lungu II, Radu CI, Vladâcenco O, Roza E, et al. An overview of oxidative stress, neuroinflammation, and neurodegenerative diseases. Int J Mol Sci. 2022 May 25;23(11):5938.

DOI: https://www.doi.org/10.3390/ijms23115938

Zhang Y, Jiang Y, Lu D. Diosmetin suppresses neuronal apoptosis and inflammation by modulating the phosphoinositide 3-kinase (PI3K)/AKT/nuclear factor-κB (NF-κB) signaling pathway in a rat model of pneumococcal meningitis. Med Sci Monit. 2019 Mar 27;25:2238.

DOI: https://www.doi.org/10.12659/MSM.913134

Garg M, Chaudhary SK, Goyal A, Sarup P, Kumari S, Garg N, et al. Comprehensive review on therapeutic and phytochemical exploration of diosmetin: A promising moiety. Phytomed Plus. 2022 Feb 1;2(1):100179.

DOI: https://www.doi.org/10.1016/j.phyplu.2021.100179

Aghababaei F, Hadidi M. Recent advances in potential health benefits of quercetin. Pharmaceuticals. 2023 Jul;16(7):1020.

DOI: https://www.doi.org/10.3390/ph16071020

Alharbi HOA, Alshebremi M, Babiker AY, Rahmani AH. The Role of Quercetin, a Flavonoid in the Management of Pathogenesis Through Regulation of Oxidative Stress, Inflammation, and Biological Activities. Biomolecules. 2025 Jan 20;15(1):151.

DOI: https://www.doi.org/10.3390/biom15010151

Vollmannová A, Bojňanská T, Musilová J, Lidiková J, Ňorbová M. Quercetin as one of the most abundant represented biological valuable plant components with remarkable chemoprotective effects-A review. Heliyon. 2024 Jun 20.

DOI: https://www.doi.org/10.1016/j.heliyon.2024.e32417

Jayawickreme DK, Ekwosi C, Anand A, Andres-Mach M, Wlaź P, Socała K. Luteolin for neurodegenerative diseases: A review. Pharmacol Rep. 2024 Aug;76(4):644-64.

DOI: https://www.doi.org/10.1007/s43440-024-00610-8

Abbas H, Sayed NS, Youssef NA, Gaafar PME, Mousa MR, Fayez AM, et al. Novel luteolin-loaded chitosan decorated nanoparticles for brain-targeting delivery in a sporadic Alzheimer's disease mouse model: Focus on antioxidant, anti-inflammatory, and amyloidogenic pathways. Pharmaceutics. 2022 May 6;14(5):1003.

DOI: https://www.doi.org/10.3390/pharmaceutics14051003

Nezhad Salari AM, Rasoulizadeh Z, Shabgah AG, Vakili‐Ghartavol R, Sargazi G, Gholizadeh Navashenaq J. Exploring the mechanisms of kaempferol in neuroprotection: Implications for neurological disorders. Cell Biochem Funct. 2024 Mar;42(2):e3964.

DOI: https://www.doi.org/10.1002/cbf.3964

Hussain Y, Khan H, Alsharif KF, Hayat Khan A, Aschner M, Saso L. The therapeutic potential of kaemferol and other naturally occurring polyphenols might be modulated by Nrf2-ARE signaling pathway: Current status and future direction. Molecules. 2022 Jun 28;27(13):4145.

DOI: https://www.doi.org/10.3390/molecules27134145

Mohammadkhanizadeh A, Sheibani M, Taherkhani S, Nourabadi D, Mohamadi-Zarch SM, Nikbakht F, et al. Protective Effects of Apigenin in Neurodegeneration: An update on the Potential Mechanisms. Brain Disord. 2025 Feb 2:100189.

DOI: https://www.doi.org/10.1016/j.dscb.2024.100189

Ginwala R, Bhavsar R, Chigbu DG, Jain P, Khan ZK. Potential role of flavonoids in treating chronic inflammatory diseases with a special focus on the anti-inflammatory activity of apigenin. Antioxidants. 2019 Feb 5;8(2):35.

DOI: https://www.doi.org/10.3390/antiox8020035

Varshney KK, Gupta JK, Srivastava R. Unveiling the Molecular Mechanism of Diosmetin and its Impact on Multifaceted Cellular Signaling Pathways. Protein Pept Lett. 2024 Apr 1;31(4):275-89.

DOI: https://www.doi.org/10.2174/0109298665285239231211110910

Kaabi YA. Potential roles of anti-inflammatory plant-derived bioactive compounds targeting inflammation in microvascular complications of diabetes. Molecules. 2022 Jan;27(21):7352.

DOI: https://www.doi.org/10.3390/molecules27217352

Mushtaq Z, Sadeer NB, Hussain M, Mahwish, Alsagaby SA, Imran M, et al. Therapeutical properties of apigenin: a review on the experimental evidence and basic mechanisms. Int J Food Prop. 2023 Sep 22;26(1):1914-39.

DOI: https://www.doi.org/10.1080/10942912.2023.2236888

Meephat S, Prasatthong P, Potue P, Bunbupha S, Pakdeechote P, Maneesai P. Diosmetin ameliorates vascular dysfunction and remodeling by modulation of Nrf2/HO-1 and p-JNK/p-NF-κB expression in hypertensive rats. Antioxidants. 2021 Sep 17;10(9):1487.

DOI: https://www.doi.org/10.3390/antiox10091487

Androutsopoulos V, Wilsher N, Arroo RR, Potter GA. Bioactivation of the phytoestrogen diosmetin by CYP1 cytochromes P450. Cancer Lett. 2009;274:54–60.

DOI: https://www.doi.org/10.1016/j.canlet.2008.08.032

Androutsopoulos VP, Spandidos DA. The flavonoids diosmetin and luteolin exert synergistic cytostatic effects in human hepatoma HepG2 cells via CYP1A-catalyzed metabolism, activation of JNK and ERK and P53/P21 up-regulation. J Nutr Biochem. 2013;24:496–504.

DOI: https://www.doi.org/10.1016/j.jnutbio.2012.01.012

Downloads

Published

2025-04-30