Impact of Biogenic Selenium Nanoparticles on Growth, Survival Rate and Immune Response of Nile Tilapia
Effect of Selenium Nanoparticles on Nile tilapia
Keywords:
Aquaculture, Nile tilapia, Selenium nanoparticle, Survival rateAbstract
Background: Aquaculture is a vital sector in global food production, with Nile tilapia (Oreochromis Niloticus) being a widely cultivated and consumed fish species due to its adaptability and economic importance. However, challenges such as inadequate farming practices, poor feed quality, and disease outbreaks impact its production and sustainability. Selenium nanoparticles (Se-NPs) have emerged as potential dietary supplements in aquaculture due to their antioxidant and immune-boosting properties.
Methods: This systematic review summarized findings from 16 peer-reviewed studies published between 2018 and 2024 to investigate the effects of Se-NPs on the fish’s overall health and disease resistance. It highlights different synthesis methods, optimal supplementation levels, and their impact on fish survival, immune system, and growth performance.
Results: The findings revealed that Se-NPs, particularly at concentrations around 1 mg/kg, significantly enhance tilapia health and productivity while minimizing toxicity risks.However, the effects of 1.5 mg/kg and above are understated. In a nutshell, Se-NPs at optimal levels of around 1 mg/kg improve fish's health, immunity, and growth, thus being a promising dietary supplement in aquaculture. However, the effects of higher concentrations (≥1.5 mg/kg) are unknown and require further research to establish their safety and efficacy.
Conclusion: Se-NPs promise to enhance Nile tilapia’s growth performance, immune response, and overall health in aquaculture. Therefore, incorporating Se-NPs into fish diets can improve survival rates and better nutrient absorption, addressing common farming challenges. However, there is a need for further research to optimize the use of Se-NPs, ultimately promoting sustainable practices and food security in aquaculture.
References
Chan HL, Cai J, Leung P. Aquaculture production and diversification: What causes what?. Aquaculture. 2024 Mar 30;583:740626.
DOI: https://doi.org/10.1016/j.aquaculture.2024.740626
Vergara-Solana FJ. Aquaculture and employment: Impact on livelihood and poverty. InAn Introduction to Sustainable Aquaculture 2024 Apr 9 (pp. 225-239). Routledge.
Subasinghe R, Soto D, Jia J. Global aquaculture and its role in sustainable development. Reviews in aquaculture. 2009 Mar;1(1):2-9.
DOI: https://doi.org/10.1111/j.1753-5131.2008.01002.x
Action SI. World fisheries and aquaculture. Food and Agriculture Organization. 2020;2020:1-244.
Guillen J, Natale F, Carvalho N, Casey J, Hofherr J, Druon JN, Fiore G, Gibin M, Zanzi A, Martinsohn JT. Global seafood consumption footprint. Ambio. 2019 Feb 15;48:111-22.
DOI: https://doi.org/10.1007/s13280-018-1060-9
Abd El-Hack ME, El-Saadony MT, Nader MM, Salem HM, El-Tahan AM, Soliman SM, Khafaga AF. Effect of environmental factors on growth performance of Nile tilapia (Oreochromis niloticus). International journal of biometeorology. 2022 Nov;66(11):2183-94.
DOI: https://doi.org/10.1007/s00484-022-02347-6
Santos VB, Mareco EA, Dal Pai Silva M. Growth curves of Nile tilapia (Oreochromis niloticus) strains cultivated at different temperatures. Acta Scientiarum. Animal Sciences. 2013;35:235-42.
DOI: https://doi.org/10.4025/actascianimsci.v35i3.19443
Munguti JM, Nairuti R, Iteba JO, Obiero KO, Kyule D, Opiyo MA, Abwao J, Kirimi JG, Outa N, Muthoka M, Githukia CM. Nile tilapia (Oreochromis niloticus Linnaeus, 1758) culture in Kenya: Emerging production technologies and socio‐economic impacts on local livelihoods. Aquaculture, Fish and Fisheries. 2022 Aug;2(4):265-76.
DOI: https://doi.org/10.1002/aff2.58
Trotta F, Mele A. Nanomaterials: classification and properties. Nanosponges: Synthesis and applications. 2019 Jan 29:1-26.
Ye R, Huang J, Wang Z, Chen Y, Dong Y. Trace element selenium effectively alleviates intestinal diseases. International Journal of Molecular Sciences. 2021 Oct 28;22(21):11708.
DOI: https://doi.org/10.3390/ijms222111708
Ahmad N, Hussain SM, Ali S, Tahir MF, Sarker PK, Shahid M. Nano-selenium supplementation: improving growth, digestibility and mineral absorption in freshwater fish, Catla catla. BMC veterinary research. 2024 Sep 28;20(1):438.
DOI: https://doi.org/10.1186/s12917-024-04291-6
Abdollahi-Mousavi SE, Keyvanshokooh S, Mozanzadeh MT, Ghasemi A. Exploring the effects and possible mechanisms of nutritional selenium nanoparticles on production performance and stress recovery in the Arabian yellowfin seabream (Acanthopagrus arabicus) model. Aquaculture Reports. 2024 Jun 1;36:102051.
DOI: https://doi.org/10.1016/j.aqrep.2024.102051
Al-Wakeel AH, Elbahnaswy S, Eldessouki EA, Risha E, Zahran E. Dietary biogenic selenium nanoparticles improve growth and immune-antioxidant indices without inducing inflammatory responses in Nile tilapia. Scientific Reports. 2024 Sep 23;14(1):21990.
DOI: https://doi.org/10.1038/s41598-024-72022-w
Saad AM, Sitohy MZ, Sultan-Alolama MI, El-Tarabily KA, El-Saadony MT. Green nanotechnology for controlling bacterial load and heavy metal accumulation in Nile tilapia fish using biological selenium nanoparticles biosynthesized by Bacillus subtilis AS12. Frontiers in microbiology. 2022 Dec 23;13:1015613.
DOI: https://doi.org/10.3389/fmicb.2022.1015613
Dawit Moges F, Hamdi H, Al-Barty A, Zaid AA, Sundaray M, Parashar SK, Gubale AG, Das B. Effects of selenium nanoparticle on the growth performance and nutritional quality in Nile Tilapia, Oreochromis niloticus. PloS one. 2022 Jun 2;17(6):e0268348.
DOI: https://doi.org/10.1371/journal.pone.0268348
Sherif AH, Zommara MA. Selenium nanoparticles ameliorate adverse impacts of aflatoxin in Nile Tilapia with Special Reference to Streptococcus agalactiae infection. Biological Trace Element Research. 2024 Oct;202(10):4767-77.
DOI: https://doi.org/10.1007/s12011-023-04031-1
Eissa ES, Bazina WK, Abd El-Aziz YM, Abd Elghany NA, Tawfik WA, Mossa MI, Abd El Megeed OH, Abd El-Hamed NN, El-Saeed AF, El-Haroun E, Davies SJ. Nano-selenium impacts on growth performance, digestive enzymes, antioxidant, immune resistance and histopathological scores of Nile tilapia, Oreochromis niloticus against Aspergillus flavus infection. Aquaculture International. 2024 Apr;32(2):1587-611.
DOI: https://doi.org/10.1007/s10499-023-01230-4
Zahran E, Elbahnaswy S, Ahmed F, Risha E, Mansour AT, Alqahtani AS, Awadin W, Sebaei MG. Dietary microalgal-fabricated selenium nanoparticles improve Nile tilapia biochemical indices, immune-related gene expression, and intestinal immunity. BMC Veterinary Research. 2024 Mar 18;20(1):107.
DOI: https://doi.org/10.1186/s12917-024-03966-4
Araujo JM, Fortes-Silva R, Pola CC, Yamamoto FY, Gatlin III DM, Gomes CL. Delivery of selenium using chitosan nanoparticles: Synthesis, characterization, and antioxidant and growth effects in Nile tilapia (Orechromis niloticus). PLoS One. 2021 May 18;16(5):e0251786.
DOI: https://doi.org/10.1371/journal.pone.0251786
Shehata A, Yousef M, Mansour A, Fayed W, Srour T, Nour AM. Effect of Dietary Supplementation of Selenium and Copper Nanoparticles on The Growth Performance and Feed Utilization of Nile Tilapia (Oreochromis niloticus) Fingerlings. Journal of the Advances in Agricultural Researches. 2018 Mar 31;23(1):100-11.
Al-Din S. Growth, feed efficiency, hemato-biochemical indices, and flesh quality of adult Nile Tilapia, Oreochromis niloticus, fed a diet supplemented with nano-selenium. Egyptian Journal of Aquatic Biology and Fisheries. 2022 Nov 1;26(6):653-76.
DOI: 10.21608/ejabf.2022.275456
Ghazi S, Diab AM, Khalafalla MM, Mohamed RA. Synergistic effects of selenium and zinc oxide nanoparticles on growth performance, hemato-biochemical profile, immune and oxidative stress responses, and intestinal morphometry of Nile tilapia (Oreochromis niloticus). Biological trace element research. 2021 Feb 10:1-1.
DOI: https://doi.org/10.1007/s12011-021-02631-3
Rathore SS, Murthy HS, Mamun MA, Nasren S, Rakesh K, Kumar BT, Abhiman PB, Khandagale AS. Nano-selenium supplementation to ameliorate nutrition physiology, immune response, antioxidant system and disease resistance against Aeromonas hydrophila in monosex Nile tilapia (Oreochromis niloticus). Biological trace element research. 2021 Aug;199:3073-88.
DOI: https://doi.org/10.1007/s12011-020-02416-0
Ayoub HF, Tohamy EY, Salama HM, Mohamed SS. Citrullus colocynthis extract and synthesized Selenium nanoparticles enhance non‐specific response and resistance against Aeromonas sobria in Nile tilapia (Oreochromis niloticus). Aquaculture Research. 2021 Oct;52(10):4969-82.
DOI: https://doi.org/10.1111/are.15366
Rathore SS, Murthy HS, Girisha SK, Nithin MS, Nasren S, Mamun MA, Puneeth TG, Rakesh K, Kumar BT, Pai M. Supplementation of nano‐selenium in fish diet: Impact on selenium assimilation and immune-regulated selenoproteome expression in monosex Nile tilapia (Oreochromis niloticus). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 2021 Feb 1;240:108907.
DOI: https://doi.org/10.1016/j.cbpc.2020.108907
Ibrahim MS, El‐gendy GM, Ahmed AI, Elharoun ER, Hassaan MS. Nanoselenium versus bulk selenium as a dietary supplement: Effects on growth, feed efficiency, intestinal histology, haemato‐biochemical and oxidative stress biomarkers in Nile tilapia (Oreochromis niloticus Linnaeus, 1758) fingerlings. Aquaculture Research. 2021 Nov;52(11):5642-55.
DOI: https://doi.org/10.1111/are.15439
Dawood MA, Zommara M, Eweedah NM, Helal AI. Synergistic effects of selenium nanoparticles and vitamin E on growth, immune-related gene expression, and regulation of antioxidant status of Nile tilapia (Oreochromis niloticus). Biological trace element research. 2020 Jun;195:624-35.
DOI: https://doi.org/10.1007/s12011-019-01857-6
Al-Deriny SH, Dawood MA, Elbialy ZI, El-Tras WF, Mohamed RA. Selenium nanoparticles and spirulina alleviate growth performance, hemato-biochemical, immune-related genes, and heat shock protein in Nile tilapia (Oreochromis niloticus). Biological Trace Element Research. 2020 Dec;198:661-8.
DOI: https://doi.org/10.1007/s12011-020-02096-w
Verma P, Maheshwari SK. Preparation of sliver and selenium nanoparticles and its characterization by dynamic light scattering and scanning electron microscopy. Journal of microscopy and ultrastructure. 2018 Oct 1;6(4):182-7.
DOI: 10.4103/JMAU.JMAU_3_18
Ramachandran T, Manoharan D, Natesan S, Rajaram SK, Karuppiah P, Shaik MR, Khan M, Shaik B. Synthesis and Structural Characterization of Selenium Nanoparticles–Bacillus sp. MKUST-01 Exopolysaccharide (SeNPs–EPS) Conjugate for Biomedical Applications. Biomedicines. 2023 Sep 12;11(9):2520.
DOI: https://doi.org/10.3390/biomedicines11092520
Zhang X, Yan H, Ma L, Zhang H, Ren DF. Preparation and characterization of selenium nanoparticles decorated by Spirulina platensis polysaccharide. Journal of Food Biochemistry. 2020 Sep;44(9):e13363.
DOI: https://doi.org/10.1111/jfbc.13363
Zhang T, Qi M, Wu Q, Xiang P, Tang D, Li Q. Recent research progress on the synthesis and biological effects of selenium nanoparticles. Frontiers in nutrition. 2023 May 16;10:1183487.
DOI: https://doi.org/10.3389/fnut.2023.1183487
Longbaf Dezfouli M, Ghaedtaheri A, Keyvanshokooh S, Salati AP, Mousavi SM, Pasha‐Zanoosi H. Combined or individual effects of dietary magnesium and selenium nanoparticles on growth performance, immunity, blood biochemistry and antioxidant status of Asian seabass (Lates calcarifer) reared in freshwater. Aquaculture Nutrition. 2019 Dec;25(6):1422-30.
DOI: https://doi.org/10.1111/anu.12962
Dawood MA, Koshio S, Zaineldin AI, Van Doan H, Ahmed HA, Elsabagh M, Abdel-Daim MM. An evaluation of dietary selenium nanoparticles for red sea bream (Pagrus major) aquaculture: growth, tissue bioaccumulation, and antioxidative responses. Environmental Science and Pollution Research. 2019 Oct;26:30876-84.
DOI: https://doi.org/10.1007/s11356-019-06223-6
Ashouri S, Keyvanshokooh S, Salati AP, Johari SA, Pasha-Zanoosi H. Effects of different levels of dietary selenium nanoparticles on growth performance, muscle composition, blood biochemical profiles and antioxidant status of common carp (Cyprinus carpio). Aquaculture. 2015 Sep 1;446:25-9.
DOI: https://doi.org/10.1016/j.aquaculture.2015.04.021
Thummabancha K, Onparn N, Srisapoome P. Analysis of hematologic alterations, immune responses and metallothionein gene expression in Nile tilapia (Oreochromis niloticus) exposed to silver nanoparticles. Journal of immunotoxicology. 2016 Nov 1;13(6):909-17.
DOI: https://doi.org/10.1080/1547691X.2016.1242673
Abdel-Latif HM, Dawood MA, Mahmoud SF, Shukry M, Noreldin AE, Ghetas HA, Khallaf MA. Copper oxide nanoparticles alter serum biochemical indices, induce histopathological alterations, and modulate transcription of cytokines, HSP70, and oxidative stress genes in Oreochromis niloticus. Animals. 2021 Mar 1;11(3):652.
DOI: https://doi.org/10.3390/ani11030652
Ghazi S, Diab AM, Khalafalla MM, Mohamed RA. Synergistic effects of selenium and zinc oxide nanoparticles on growth performance, hemato-biochemical profile, immune and oxidative stress responses, and intestinal morphometry of Nile tilapia (Oreochromis niloticus). Biological trace element research. 2021 Feb 10:1-1.
DOI: https://doi.org/10.1007/s12011-021-02631-3
Abdel-Tawwab M, Eldessouki EA, Abd-Ellatieff HA, Khalil RH, El-Sabbagh NM, Saleh HM, Saleh NA, Abdelhakim TM, Samak DH. Antagonistic effects of Bacillus subtilis-derived chitosan nanoparticles on growth performance, stress biomarkers, and histological alterations of cadmium-intoxicated Nile tilapia fingerlings. Aquaculture International. 2024 Dec;32(7):10269-99.
DOI: https://doi.org/10.1007/s10499-024-01661-7
Alandiyjany MN, Kishawy AT, Abdelfattah-Hassan A, Eldoumani H, Elazab ST, El-Mandrawy SA, Saleh AA, ElSawy NA, Attia YA, Arisha AH, Ibrahim D. Nano-silica and magnetized-silica mitigated lead toxicity: Their efficacy on bioaccumulation risk, performance, and apoptotic targeted genes in Nile tilapia (Oreochromis niloticus). Aquatic Toxicology. 2022 Jan 1;242:106054.
DOI: https://doi.org/10.1016/j.aquatox.2021.106054
Elamawy A, Hegazi E, Nassef E, Abouzed TK, Zaki AG, Ismail T. Dietary inclusion of nano-phosphorus improves growth performance, carcass quality, and growth-related traits of Nile tilapia (Oreochromis niloticus) and alleviates water phosphorus residues. Fish Physiology and Biochemistry. 2023 Jun;49(3):529-42.
DOI: https://doi.org/10.1007/s10695-023-01199-0
Mohammady EY, Elashry MA, Ibrahim MS, Elarian M, Salem SM, El-Haroun ER, Hassaan MS. Nano Iron Versus Bulk Iron Forms as Functional Feed Additives: Growth, Body Indices, Hematological Assay, Plasma Metabolites, Immune, Anti-oxidative Ability, and Intestinal Morphometric Measurements of Nile tilapia, Oreochromis niloticus. Biological Trace Element Research. 2024 Feb;202(2):787-99.
DOI: https://doi.org/10.1007/s12011-023-03708-x
Yazdani Z, Mehrgan MS, Khayatzadeh J, Shekarabi SP, Tabrizi MH. Dietary green-synthesized curcumin-mediated zinc oxide nanoparticles promote growth performance, haemato-biochemical profile, antioxidant status, immunity, and carcass quality in Nile tilapia (Oreochromis niloticus). Aquaculture Reports. 2023 Oct 1;32:101717.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Fariha Ibrahim, Bushra Anzar, Ayesha Ali

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.






