Dermatophyte Growth and Enzyme Assays on Indigenously Formulated Low-Cost Plant Extract-Based Media
Low-Cost Plant Extract Media for Dermatophyte Growth and Enzyme Assays
Keywords:
Clinical laboratory, Culture media, Dermatophytes, Hemolysis, Microsporum, TrichophytonAbstract
Background: The high cost of microbiological culture media is a significant economic burden for diagnostic laboratories. This study aims to evaluate the potential of plant-based extracts as low-cost alternatives to expensive conventional media for growing, isolating, and screening dermatophyte enzyme activity.
Methods: Extracts from indigenous medicinal/edible plants were used to prepare media for growing Trichophyton mentagrophytes and Microsporum gypseum. Growth and enzyme activity were assessed and compared with conventional Sabouraud’s dextrose agar (SDA).
Results: Dermatophyte species showed reproducible growth on various concentrations of general plant extracts (GPx), with optimal results when sugarcane peel extract (SPx) was added as an additional carbon source. Maximum growth of T. mentagrophytes (85 mm) and M. gypseum (55 mm) occurred on GPx+SPx media within 7 days, compared to 14 days on SDA. Combinations of chicken feather extract (CHFx) or orange lentil extract (OLx) with GPx+SPx also enhanced fungal growth. No lipase, phospholipase, or gelatinase activity was observed on any media. However, gelatin liquefaction occurred when GPx was combined with SPx and OLx as the nitrogen source. Hemolysis was observed with M. gypseum at 37°C, whereas neither fungal species demonstrated enzymatic activity in conventional media.
Conclusion: Plant extract-based media offer a viable alternative to commercially available culture media for dermatophyte growth and screening, providing a cost-effective solution for diagnostic laboratories.
References
Z, Aliyari H. In Vitro Enzymatic Virulence Factors of Dermatophytes Species Isolated From Clinical Specimens. Journal of Inflammatory Diseases. 2022 Mar 10;26(1):35-42.
Martinez-Rossi NM, Peres NT, Bitencourt TA, Martins MP, Rossi A. State-of-the-art dermatophyte infections: epidemiology aspects, pathophysiology, and resistance mechanisms. Journal of Fungi. 2021 Aug 3;7(8):629. DOI: https://doi.org/10.3390/jof7080629
Ahmad MR, Javed I, Mushtaq S, Hafeez R, Cheema KH. Evaluation of dermatophyte test medium and sabouraud dextrose agar for isolation of dermatophyte species. Biomedica. 2020; 36 (4): 362-6. DOI: https://doi.org/10.51441/BioMedica/5-80.
Moskaluk AE, VandeWoude S. Current topics in dermatophyte classification and clinical diagnosis. Pathogens. 2022 Aug 23;11(9):957. DOI: https://doi.org/110.3390/pathogens11090957
Gautam AK, Verma RK, Avasthi S, Sushma, Bohra Y, Devadatha B, Niranjan M, Suwannarach N. Current insight into traditional and modern methods in fungal diversity estimates. Journal of Fungi. 2022 Feb 24;8(3):226. DOI: https://doi.org/10.3390/jof8030226
Dubljanin E, Zunic J, Vujcic I, Colovic Calovski I, Sipetic Grujicic S, Mijatovic S, Dzamic A. Host-Pathogen Interaction and Resistance Mechanisms in Dermatophytes. Pathogens. 2024 Aug 4;13(8):657. DOI: https://doi.org/10.3390/pathogens13080657
Acharya T, Hare J. Sabouraud Agar and Other Fungal Growth Media. Laboratory Protocols in Fungal Biology: Current Methods in Fungal Biology. 2022 Feb 3:69. DOI: https://doi.org/10.1007/978-3-030-83749-5_2
Atlas, R.M. 2010. Handbook of Microbiological Media (4th ed). CRC Press. DOI: https://doi.org/10.1201/EBK1439804063
Arip AG, Wulandari A. The use of coconut water (Cocos nucifera L.) as an alternative media to substitute Sabouraud Dextrose Agar (SDA) for the growth of Aspergillus flavus. IOP Conf Ser Earth Environ Sci. 2021 Jul 1;819(1):012061. DOI: https://doi.org/10.1088/1755-1315/819/1/012061
Saleem, S., T.A. Ali and S. Eijaz. 2025. Growth media from plant extracts for industrially important fungus; Aspergillus niger. Pak. J. Bot., 57(3): DOI: http://dx.doi.org/10.30848/PJB2025-3(2).
Rashmi HB, Negi PS. Chemistry of plant extracts. In Plant Extracts: Applications in the Food Industry 2022 Jan 1: 39-73. Academic Press. DOI: https://doi.org/10.1016/B978-0-12-822475-5.00004-1
Kumar A, P N, Kumar M, Jose A, Tomer V, Oz E, Proestos C, Zeng M, Elobeid T, K S, Oz F. Major phytochemicals: recent advances in health benefits and extraction method. Molecules. 2023 Jan 16;28(2):887. DOI: https://doi.org/10.3390/molecules28020887
Dias MC, Pinto DCGA, Silva AMS. Plant Flavonoids: Chemical Characteristics and Biological Activity. Molecules. 2021 Sep 4;26(17):5377. DOI: https://doi.org/10.3390/molecules26175377
Plaskova A, Mlcek J. New insights of the application of water or ethanol-water plant extract rich in active compounds in food. Frontiers in Nutrition. 2023 Mar 28;10:1118761. DOI: https://doi.org/10.3389/fnut.2023.1118761
Tiple RH, Jamane SR, Khobragade DS. Antifungal Activity of Neem Leaf Extract With Eucalyptus citriodora Oil and Cymbopogon martini Oil Against Tinea Capitis: An In-Vitro Evaluation. Cureus. 2024 May;16(5). DOI: https://doi.org/10.7759/cureus.59671
Ahmed M, Marrez DA, Mohamed Abdelmoeen N, Abdelmoneem Mahmoud E, Ali MA, Decsi K, Tóth Z. Studying the antioxidant and the antimicrobial activities of leaf successive extracts compared to the green-chemically synthesized silver nanoparticles and the crude aqueous extract from Azadirachta indica. Processes. 2023 May 27;11(6):1644. DOI: https://doi.org/10.3390/pr11061644
Mohammed FR, Abboud ZH, Hussein KA. Effects of some plants extracts in growth of some dermatophytes. Journal of Kerbala University. 2023 Jul 24;20(1).
Chaiwaree S, Pongpaibul Y, Thammasit P. Anti-dermatophyte activity of the aqueous extracts of Thai medicinal plants. Brazilian Journal of Biology. 2022 Jan 17;82:e254291.
Andersa KN, Tamiru M, Teka TA, Ali IM, Chane KT, Regasa TK, Ahmed EH. Proximate composition, some phytochemical constituents, potential uses, and safety of neem leaf flour: A review. Food Science & Nutrition. 2024 Jul 17. DOI: https://doi.org/10.1002/fsn3.4336
Corrêa AL, Oliveira AP, Ruppelt BM, de Araújo ER, Santos MG, Caldas GR, Muylaert FF, Amendoeira FC, Ferraris FK, de Souza CM, Fuly AL. Protective effect of Myrsine parvifolia plant extract against the inflammatory process induced by Bothrops jararaca snake venom. Toxicon. 2019 Jan 1;157:66-76. DOI: https://doi.org/10.1016/j.toxicon.2018.11.289
Félix-Silva J, Gomes JA, Xavier-Santos JB, Passos JG, Silva-Junior AA, Tambourgi DV, Fernandes-Pedrosa MF. Inhibition of local effects induced by Bothrops erythromelas snake venom: assessment of the effectiveness of Brazilian polyvalent bothropicantivenom and aqueous leaf extract of Jatropha gossypiifolia. Toxicon. 2017 Jan 1;125:74- 83. DOI: https://doi.org/0.1016/j.toxicon.2016.11.260
Gnat S, Łagowski D, Nowakiewicz A, Osińska M, Kopiński Ł. Population differentiation, antifungal susceptibility, and host range of Trichophyton mentagrophytes isolates causing recalcitrant infections in humans and animals. European Journal of Clinical Microbiology & Infectious Diseases. 2020 Nov;39:2099-113. DOI: https://doi.org/10.1007/s10096-020-03952-2
Nwofor CN, Onyenwe NE, Osuoha CB. Pathogenecity and enzyme screening of some selected non-dermatophytic molds. Access Microbiology. 2024 Apr 16:000683-v4. DOI: https://doi.org/10.1099/acmi.0.000683.v5.
Bonci MM, Makita MT, de Almeida Mendes C, de Abreu DP, Ribeiro LV, Duarte GA, de Campos SG, Paula CR, de Assis Baroni F. In vitro virulence evaluation of clinical and environmental isolates of dermatophyte fungi. Research, Society and Development. 2021 May 28;10(6):e21110615699. DOI: https://doi.org/10.33448/rsd-v10i6.15699
Pokhrel P, Jha S, Giri B. Selection of appropriate protein assay method for a paper microfluidics platform. Practical laboratory medicine. 2020 Aug 1;21:e00166. DOI: https://doi.org/10.1016/j.plabm.2020.e00166
Salem SA, Alhousini EM, Al-Amgad Z, Mahmoud MA. Efficiency of spinetoram on biological, biochemical, and histological parameters in the invasive fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) in Egypt. Journal of Plant Diseases and Protection. 2024 Apr;131(2):489-99. DOI: https://doi.org/10.1007/s41348-023-00835-4
Boutafda A, Hafidi M, Ouhdouch Y, Pinelli E, Jemo M, El Fels L. Fungal strain as biological tool to remove genotoxicity effect of phenolic compounds from olive mill wastewater. Sustainability. 2023 Apr 12;15(8):6510. DOI: https://doi.org/10.3390/su15086510
Perța-Crișan S, Ursachi CȘ, Gavrilaș S, Oancea F, Munteanu FD. Closing the loop with keratin-rich fibrous materials. Polymers. 2021 Jun 7;13(11):1896. https://doi.org/10.3390/polym13111896 29.
Pourjavaheri F, Pour SO, Jones OA, Smooker PM, Brkljača R, Sherkat F, Blanch EW, Gupta A, Shanks RA. Extraction of keratin from waste chicken feathers using sodium sulfide and l-cysteine. Process Biochemistry. 2019 Jul 1;82:205-14.
DOI: https://doi.org/10.1016/j.procbio.2019.04.010
Ciesielska A, Kawa A, Kanarek K, Soboń A, Szewczyk R. Metabolomic analysis of Trichophyton rubrum and Microsporum canis during keratin degradation. Scientific reports. 2021 Feb 17;11(1):3959. DOI: https://doi.org/10.1038/s41598-021-83632-z
El-Desouky TA. Evaluation of effectiveness aqueous extract for some leaves of wild edible plants in Egypt as anti-fungal and anti-toxigenic. Heliyon. 2021 Feb 1;7(2). DOI: https://doi.org/10.1016/j.heliyon.2021.e06209
Kursa W, Jamiołkowska A, Wyrostek J, Kowalski R. Antifungal effect of plant extracts on the growth of the cereal pathogen Fusarium spp.—an in vitro study. Agronomy. 2022 Dec 16;12(12):3204. DOI: https://doi.org/10.3390/agronomy12123204
Taha M, Tartor YH, Abdul-Haq SI, El-Maati MF. Characterization and antidermatophyte activity of henna extracts: a promising therapy for humans and animals dermatophytoses. Current Microbiology. 2022 Feb;79(2):59. DOI: https://doi.org/10.1007/s00284-021-02686-4
Yanyun C, Ying T, Wei K, Hua F, Haijun Z, Ping Z, Shunming X, Jian W. Preliminary Study on Antifungal Mechanism of Aqueous Extract of Cnidium monnieri Against Trichophyton rubrum. Front Microbiol. 2021 Aug 19;12:707174. DOI: https://doi.org/10.3389/fmicb.2021.707174
Noites A, Borges I, Araújo B, da Silva JCGE, de Oliveira NM, Machado J, Pinto E. Antimicrobial Activity of Some Medicinal Herbs to the Treatment of Cutaneous and Mucocutaneous Infections: Preliminary Research. Microorganisms. 2023; 11(2):272. DOI: https://doi.org/10.3390/microorganisms11020272
Aneke CI, Rhimi W, Hubka V, Otranto D, Cafarchia C. Virulence and antifungal susceptibility of Microsporum canis strains from animals and humans. Antibiotics. 2021 Mar 12;10(3):296. DOI: https://doi.org/10.3390/antibiotics10030296
Gnat S, Łagowski D, Nowakiewicz A. Major challenges and perspectives in the diagnostics and treatment of dermatophyte infections. Journal of applied microbiology. 2020 Aug 1;129(2):212-32. DOI: https://doi.org/10.1111/jam.14611
Sipiczki G, Micevic SS, Kohari-Farkas C, Nagy ES, Nguyen QD, Gere A, Bujna E. Effects of Olive Oil and Tween 80 on Production of Lipase by Yarrowia Yeast Strains. Processes. 2024 Jun;12(6):1206. DOI: https://doi.org/10.3390/pr12061206
Martins MP, Rossi A, Sanches PR, Bortolossi JC, Martinez-Rossi NM. Comprehensive analysis of the dermatophyte Trichophyton rubrum transcriptional profile reveals dynamic metabolic modulation [Internet]. Biochemical Journal. 2020 ; 477( 5): 873-885. DOI: https://doi.org/10.1042/BCJ20190868
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Sadiah Saleem, Warda Hakeem

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.






