

Obesity's Uptick Among Physical Therapists: A Matter of Growing Concern

Huzaifa Ather Rajar¹, Faryal Shaukat¹, Sheikh Muhammad Munir¹, Danish Zaman¹, Ushna Asif², Muhammad Ather Hashmi¹

¹Ziauddin College of Physical Therapy, Faculty of Allied Health Sciences, Ziauddin University, Karachi, Pakistan

²Karachi Institute of Health Sciences, Karachi, Pakistan

ABSTRACT

Background: Obesity is rising globally, negatively impacting public health. This study examines obesity prevalence among physical therapists and its potential effects on job performance and healthcare. Using BMI classifications from the Asia Pacific and World Health Organization (WHO), the study assesses obesity rates among physical therapists.

Methods: A cross-sectional study was conducted over three months with 165 physical therapists from public and private hospitals, clinical units, and academic institutions in Karachi. Participants provided informed consent, and data were collected using non-probability convenience sampling. BMI was calculated from height and weight measurements, classified according to Asia Pacific and WHO guidelines.

Results: The mean age of participants, primarily clinicians (66%), was 38.92 years. Obesity prevalence was 24.1% (grade-I) and 10.8% (grade-II). Among female physiotherapists, 15% were overweight, 27% obese type-I, and 9% obese type-II, compared to 8%, 13%, and 9% in males, respectively.

Conclusion: The study highlights a concerning obesity prevalence among physical therapists, particularly males. Urgent action is needed to mitigate health risks and prevent negative impacts on job performance and healthcare costs. Obesity prevention should be prioritized, with further research required to explore its effects on healthcare professionals.

Keywords: Body mass index, Lifestyle, Obesity, Physical fitness, Risk factor.

Received: September 16, 2023; **Revised:** October 30, 2024; **Accepted:** December 9, 2024

Corresponding Email: ather.hashmi@zu.edu.pk

DOI: <https://doi.org/10.59564/amrj/03.01/004>

INTRODUCTION

Obesity has emerged as a significant global health challenge worldwide¹. Obesity, according to the World Health Organization (WHO), is reported to be threefold more in occurrence since the 1970s, with 650 million adults being categorized as obese in the second decade of the twenty-first century². With nearly 13% of adults affected, obesity—also termed as a body mass index of 30 or higher—is leading the cause of death around the world³.

Recently, an overwhelming trend of obesity has been found globally among the women belonging to the middle socio-economic territories in comparison to males⁴. Moreover, the risk of degenerative diseases like Osteoarthritis (OA) is more prevalently clustered among obese individuals⁵. This has been in congruence with a deprived quality of

life accompanied by a relatively higher risk of lower back injuries⁴⁻⁶. Notably, obesity also increases the risk of cognitive issues and musculoskeletal disorders, which causes undeniable work-related injuries and illnesses among the cedar of professionals belonging to the healthcare industry⁶⁻⁷. Concerning, a significant portion of healthcare workers are obese, according to several studies on their health⁸⁻⁹. However, the risk of obesity is not evenly distributed in the general population¹⁰. Certain groups, such as healthcare workers, are at a higher risk than the general population¹⁰. Surprisingly, despite their understanding of the etiology, risks, and consequences of obesity, numerous studies conducted in Mexico and the United States consistently report that healthcare workers are more susceptible to obesity than the general

population^{3,5}. A Scotland-based study revealed that 29% of the nurses, 17% of other care workers excluding nurses, and 35% of unregistered care workers were obese⁵. Furthermore, the Department of Health in England estimated that 300,000 healthcare professionals, accounting for up to 21% of the workforce, were obese, with the number likely to rise in line with population trends; therefore, such non-communicable diseases like obesity have been identified as a significant threat to long-term progress in the 2030 Agenda for Sustainable Development¹¹.

Although the causes of obesity are incredibly complicated and multifaceted, they frequently come down to increased consumption of foods high in calories without a corresponding increase in physical activity¹⁰. According to a recent study in Turkey, 34.8% of medical professionals were deemed overweight, and the remaining professionals were categorized as having varying degrees of obesity¹¹. This study, in particular, revealed a high prevalence of obesity among doctors¹². However, other healthcare professionals are not significantly in a different state. For instance, stigma associated with obesity in the medical field has also been identified to negatively impact physical therapists' attitudes and behaviors¹³.

Similarly, obese people may experience health problems associated with their weight, such as fatigue, breathlessness, or arthritis, which can reduce their productivity at work¹⁴. Likewise, this adversely affects the performance of physical therapists, as they are the leading fitness advocates and instrumental in promoting, directing, prescribing, and managing exercise programs for the clients¹⁵. When compared to their non-obese counterparts, physical therapists' obesity may adversely impact patient care and significantly reduce job effectiveness¹⁶. It is important to note that, even among healthcare professionals, especially physical therapists, awareness regarding obesity and weight management is a serious concern in Pakistan¹⁷. This highlights an inevitable need to conduct prevalence surveys to gather epidemiology data for obesity among the physical therapist community. This study aimed to assess the

prevalence of obesity among physical therapists in the Karachi metropolis.

METHODOLOGY

Study Design and Sample

This cross-sectional survey was conducted on 165 physical therapists working at various public and private tertiary care hospitals, clinical units, and academic institutions across Karachi.

Sampling Technique

A non-probability convenience sampling technique was employed for the sample selection.

Ethical Consideration

All the participants were given informed consent prior to data collection for them to volunteer. The data collected from participants was confidential, and all participants were allowed the right to withdraw from this research during any time of the study.

Data Collection Method

The participants filled out an assessment proforma. Subsequently, all participants' weight and height readings were recorded using a stadiometer, and the BMI was calculated through a standard formula. The Asia Pacific criteria of BMI was considered in this study along with the WHO criteria for risk of comorbidities classification, as depicted in Table-1.

Table-1 Classification of Body Mass Index (BMI) as per WHO classification

Classification	BMI kg/m ² (Asian Population)	Risk of comorbidities
Underweight	<18.5	Low
Normal	18.5-22.9	Average
Overweight	23-24	Increased
Obese I	25-29.9	Moderate
Obese II	≥30	Severe

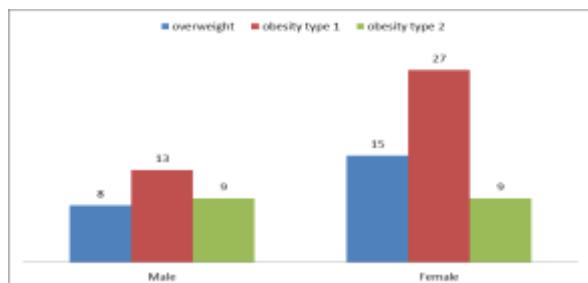
Data Analysis

The data was analyzed using SPSS version 20. The demographic characteristics and responses of the participants were represented by frequency, percentage, mean, and standard deviations while chi-square test of association

was applied to determine the association between variables.

RESULTS

A total sample of 165 participants, including 76 males and 24 females with a mean age of 38.92, were recruited from public and private medical centers in Karachi. Out of 165 participants, 66 % (111) were clinicians, 18.1 % (30) were academicians, and only 14.5 % (24) of the participants were affiliated with both academics and clinical settings. Further analysis of the results demonstrated the


breakdown under the categories of BMI, including underweight, standard, overweight, obese type-1, obese type-2 and obese type-3, along with further segmentation into academic, clinical and physical therapists who work in both domains as depicted in Table-2:

Furthermore, the gender-wise analysis revealed that 15%, 27% and 9% of the female physiotherapists come under the category of overweight, obesity type-I and obesity type-II, respectively.

Table-2 Job-Sector-Wise Distribution of BMI Classes among the Physical Therapist

Job Sector	BMI kg/m ²						
	Underweight	Normal	Overweight	Obese type-1	Obese type-2	Obese type-3	Total
Academia	7	10	4	6	3	0	30
Both	4	10	0	6	4	0	24
Clinical	9	43	19	28	12	1	111
Total	20	63	23	40	1	1	165

However, the percentage was much lower among male physiotherapists, of which 8%, 13% and 9% were found to be overweight, obese type-I and obese type-II, respectively (Fig.1).

Fig. 1 BMI Classifications among Participants

Furthermore, there is a significant association between gender and obesity <0.005 . A Pearson Chi-square test was run to check the association between gender and obesity. Moreover, the results revealed a significant association between variables, as shown in Table-3.

Table-3 Chi-Square Analysis

	Value	Df	Asymp. Sig. (2-sided)
Pearson Chi-Square	16.479 ^a	5	.004
Likelihood Ratio	16.693	5	.005
N of Valid Cases	165		

DISCUSSION

This cross-sectional study aimed to estimate and describe the prevalence of overweight and obesity in physical therapists. The study found that the prevalence of overweight, type-1 and type-2 obesity was significantly higher in male physical therapists than in female physical therapists. Obesity is more prevalent among physical therapists due to an increase in physical inactivity, which has the potential to lead to an obesity epidemic within this professional group¹⁸.

Like other countries, Pakistan is undergoing a confluence of concurrent transformations involving population dynamics, economic development, urbanization, and lifestyle shifts such as dietary habits and physical activity¹⁹. Notably, variations in obesity rates are primarily driven by geographical location, lifestyle choices, and dietary patterns²⁰. A high population level, for example, combined with a sedentary lifestyle and a high-calorie diet, are key factors contributing to the elevated obesity rate²¹.

It is worth noting that as more adults' progress from overweight to obesity class, the prevalence of overweight is decreasing. This trend emphasizes assessing weight changes across the

BMI spectrum rather than focusing solely on specific classifications. The significant increase in the prevalence of extreme obesity, which is closely associated with significantly higher mortality rates, increased morbidity, and increased healthcare expenditures, is especially concerning²². However, prior research has not discovered any appreciable differences in men's prevalence of severe obesity due to age. However, compared to women aged 20 to 39, those 60 years or older showed a significantly lower prevalence of extreme obesity²³.

The longer a person has been obese, the more likely it is that a given level of body fat and distribution of adipose tissue will persist into adulthood as age increases²⁴. An obese adolescent who has been overweight for two years is more likely to become an obese adult than a 10-year-old child who has been overweight for eight years²⁵. Overall, research is needed to judge the effects of obesity on physical and mental capacity to perform effectively in professional activities among physical therapists.

There are a few limitations to this study. For instance, physical therapists were hesitant to participate in the study, which resulted in a low response rate. Second, an array of factors, including dietary habits and sedentary lifestyles, contribute to the overweight and obesity epidemic. While the study detects the potential importance of healthy eating habits and access to exercise opportunities in understanding what distinguishes overweight and obesity, these aspects have yet to be thoroughly explored or addressed.

CONCLUSION

The outcomes of this study elucidate that overweight and obesity constitute a swiftly expanding and enduring public health exigency, with particular pertinence to the gender-specific dimensions of obesity and its ramifications on the occupational roles of male and female physical therapists.

Significantly, the study reveals that the prevalence of obesity is significantly higher among academic physiotherapists than among their clinical counterparts. If this trend continues, it will have serious and adverse health consequences. To effectively counteract current trends, immediate

and comprehensive measures are required, supported by robust obesity control strategies, prevention initiatives, and cross-sectional interventions.

Acknowledgments

None.

Author Contributions

Huzaifa Ather Rajar was responsible for conceptualization, study design, and manuscript drafting. **Faryal Shaukat** handled data collection and analysis, while **Sheikh Muhammad Munir** contributed to methodology and statistical analysis. **Danish Zaman** conducted the literature review and assisted in manuscript editing. **Ushna Asif** played a key role in data interpretation and critical revision. **Muhammad Ather Hashmi** provided supervision and gave final approval for the manuscript.

Ethical Approval

This study received approval from the Institutional Review Board (Ref No: FMRL-IRB/2024/014) of Foundation of Medical Research and Laboratories, Karachi, Pakistan.

Grant Support and Funding Disclosure

None.

Conflict of Interests

None.

REFERENCES

1. Taib S. Prevalence and factors associated with overweight and obesity among healthcare workers in Pejabat Kesihatan Daerah Melaka Tengah. *Int J Public Health Res.* 2019;9(2):1117-1126.
2. World Health Organization. Obesity and overweight [Internet]. World Health Organization. <https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight>.
3. SingleCare. Obesity statistics [Internet]. SingleCare. <https://www.singlecare.com/blog/news/obesity-statistics/>.
4. Lawford BJ, Bennell KL, Allison K, Schwartz S, Hinman RS. Challenges with strengthening exercises for people with knee osteoarthritis and comorbid obesity: a qualitative study with patients and physiotherapists. *Arthritis Care Res.* 2020. **DOI:** <https://doi.org/10.1002/acr.24439>
5. Kyle RG, Wills J, Mahoney C, Hoyle L, Kelly M, Atherton IM. Obesity prevalence among healthcare professionals in England: a cross-sectional study using the Health Survey for England. *BMJ Open.* 2017;7(12):e018498. **DOI:** <https://doi.org/10.1136/bmjopen-2017-018498>
6. Wang YC, McPherson K, Marsh T, Gortmaker SL, Martin Brown M. Health and economic burden of the projected obesity trends in the USA and the UK. *Lancet.* 2011;378(9793):815-825. **DOI:** [https://doi.org/10.1016/S0140-6736\(11\)60814-3](https://doi.org/10.1016/S0140-6736(11)60814-3)
7. Anandacoomarasamy A, Caterson I, Sambrook P, Fransen M, March L. The impact of obesity on the musculoskeletal system. *Int J Obes.* 2008;32(2):211-222. **DOI:** <https://doi.org/10.1038/sj.ijo.0803715>
8. Studnek JR, Bentley M, Mac Crawford J, Fernandez AR. An assessment of key health indicators among emergency medical services professionals. *Prehosp Emerg Care.* 2010;14(1):14-20. **DOI:** <https://doi.org/10.3109/10903120903144957>

9. Zapka JM, Lemon SC, Magner RP, Hale J. Lifestyle behaviours and weight among hospital-based nurses. *J Nurs Manag.* 2009;17(7):853-860.
DOI: <https://doi.org/10.1111/j.1365-2834.2008.00923.x>

10. Senaratna CV, Perret JL, Lodge CJ, Lowe AJ, Campbell BE, Matheson MC, Hamilton GS, Dharmage SC. Prevalence of obstructive sleep apnea in the general population: a systematic review. *Sleep Med Rev.* 2017;34:70-81.
DOI: <https://doi.org/10.1016/j.smrv.2016.07.002>

11. Government of Pakistan. Pakistan's Implementation of the 2030 Agenda for Sustainable Development Voluntary National Review. Islamabad: Government of Pakistan; 2019.

12. Asudu M, Mollaoglu M, Mollaoglu M. Prevalence and Factors Associated with Obesity among Healthcare Professionals. *Int J Caring Sci.* 2021;14(1):433.

13. Jones CA, Forhan M. Addressing weight bias and stigma of obesity amongst physiotherapists. *Physiother Theory Pract.* 2021;37(7):808-816.
DOI: <https://doi.org/10.1080/09593985.2019.1648623>

14. Siagian E, Ramschie PA. Physical Activity And Nurses' Attribute Variables To Body Mass Index And Uric Acid. *J Ilm Ilmu Keperawatan Indones.* 2021;11(01).
DOI: <https://doi.org/10.33221/jiiki.v11i01.950>

15. McMenamin P, Wickstrom R, MSPT O, Bagley J, Johnson C, Jones K. Current Concepts in Occupational Health: Role of Physical Therapists in Occupational Health.

16. Elboim-Gabyzon M, Attar K, Peleg S. Weight stigmatization among physical therapy students and registered physical therapists. *Obesity facts.* 2020;2(2):104-116.
DOI: <https://doi.org/10.1159/000504809>

17. Butt F, Butt AF, Alam F, Aslam N, Moeed HA, Butt FA. Perception and Management of Obesity Among Pakistani Doctors. *Cureus.* 2019;11(2).
DOI: <https://doi.org/10.7759/cureus.4156>

18. Harris-Hayes M, Schootman M, Schootman JC, Hastings MK. The role of physical therapists in fighting the type 2 diabetes epidemic. *Journal of orthopaedic & sports physical therapy.* 2020 Jan;50(1):5-16.
DOI: <https://doi.org/10.2519/jospt.2020.9154>

19. Arif GM, Gul X, Ashfaq S, Fatima M, Qureshi T. Population Challenges in a Changing World: An Overview of the 22nd Annual Research Conference of the Population Association of Pakistan. *NUST Journal of Social Sciences and Humanities.* 2022;8(3):1-5.
DOI: <https://doi.org/10.51732/njssh.v8i3.152>

20. Lăcătușu CM, Grigorescu ED, Floria M, Onofrescu A, Mihai BM. The mediterranean diet: From an environment-driven food culture to an emerging medical prescription. *International journal of environmental research and public health.* 2019 Mar;16(6):942.
DOI: <https://doi.org/10.3390/ijerph16060942>

21. Barua S, Saikia N. Perception, risk factors, and health behaviours in adult obesity in Kolkata, India: a mixed methods approach. *BMC Public Health.* 2022 Dec 19;22(1):2376.
DOI: <https://doi.org/10.1186/s12889-022-14531-9>

22. Lehnert T, Sonntag D, Kornopka A, Riedel-Heller S, König HH. Economic costs of overweight and obesity. *Best practice & research Clinical endocrinology & metabolism.* 2013 Apr 1;27(2):105-15.
DOI: <https://doi.org/10.1016/j.beem.2013.01.002>

23. Abbate M, Pericas J, Yañez AM, López-González AA, De Pedro-Gómez J, Aguiló A, Morales-Asencio JM, Bennasar-Veny M. Socioeconomic inequalities in metabolic syndrome by age and gender in a Spanish working population. *International Journal of Environmental Research and Public Health.* 2021 Sep 30;18(19):10333.
DOI: <https://doi.org/10.3390/ijerph181910333>

24. Rodgers A, Sferruzzi-Perri AN. Developmental programming of offspring adipose tissue biology and obesity risk. *International Journal of Obesity.* 2021 Jun;45(6):1170-92.
DOI: <https://doi.org/10.1038/s41366-021-00790-w>

25. Pinhas-Hamiel O, Hamiel U, Bendor CD, Bardugo A, Twig G, Cukierman-Yaffe T. The global spread of severe obesity in toddlers, children, and adolescents: a systematic review and meta-analysis. *Obesity facts.* 2022 Jan 11;15(2):118-34.
DOI: <https://doi.org/10.1159/000521913>