

Combined Upper Cervical Mobilization and Shoulder Strengthening in Overhead Athletes with Cervical Hypermobility

Shahnila Anum¹ , Rabia Khan², Danish Latif³

¹Aftab Medical & Physiotherapy Center

²Bahria University Health Sciences, Campus Karachi, Pakistan

³Rawal Institute of Health Sciences, Islamabad, Pakistan

ABSTRACT

Background: Throwing performance among athletes is significantly affected coupled with increased risk of injury in the presence of scapular dyskinesia. The condition is prevalent among 50% of athletes involving in overhead movements. The present study is aimed to determine the effects of combined upper cervical mobilization and shoulder strengthening in overhead athletes throwing performance and scapular movement experiencing upper cervical hypermobility.

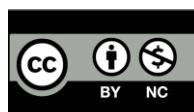
Methods: A randomized controlled trial was conducted at Aftab Physiotherapy and Medical Centre and Rawal Institute of Health Sciences, between June 2024 and August 2025. A sample size of n=24 athletes were recruited. The outcome measures were assessed at baseline, week 6 and week 12. Assessment was based on shoulder active range of motion, scapular dyskinesia test, throwing performance and disability of the arm, shoulder and hand (DASH) questionnaire.

Results: Twenty participants completed all assessments (10 per group). At 12 weeks, the experimental group demonstrated significantly greater improvements compared to the control group in shoulder flexion ($178.90 \pm 4.52^\circ$ vs. $172.30 \pm 5.28^\circ$, $p=0.005$), abduction ($176.40 \pm 5.18^\circ$ vs. $170.80 \pm 5.89^\circ$, $p=0.028$), and external rotation ($94.70 \pm 4.28^\circ$ vs. $89.50 \pm 4.76^\circ$, $p=0.015$). Normal scapular movement patterns were achieved in 60% of experimental group participants compared to only 30% in the control group ($p=0.041$).

Conclusion: Combining upper cervical mobilizations with shoulder strengthening exercises produced significantly superior improvements in shoulder range of motion, throwing performance, scapular movement quality, and upper extremity function compared to shoulder strengthening alone in overhead athletes with scapular dyskinesia and upper cervical hypermobility.

Keywords: Athletes, Pain, Range of motion, Shoulder

Received: December 1, 2025; **Revised:** January 10, 2026; **Accepted:** January 16, 2026


Corresponding Email: dr.shanila@gmail.com

DOI: <https://doi.org/10.59564/amrj/04.01/006>

INTRODUCTION

Overhead athletes, including swimmers, baseball players, and other throwing athletes, experience significant demands on their upper extremity kinetic chain. The integrated function of the cervical spine, scapula, shoulder complex, and core musculature is essential for optimal throwing velocity, accuracy, and injury prevention in these populations¹. Nevertheless, abnormal movement pattern of the scapula and scapular dyskinesia while performing overhead activities is a prevalent dysfunction the effects performance

and increase risk of shoulder injury². The condition of scapular dyskinesia is characterized by an abnormal movement of the scapula during overhead activities that causes increase in stress on rotator cuff and altered glenohumeral mechanics. A study has revealed that scapular dyskinesia is prevalent among 50-100% of overhead athletes complaining of shoulder pain⁴. Multiple factors cause scapular dyskinesia ranging from scapular stabilizer weakness to postural deviation such as forward head posture⁵.

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits others to share, copy, redistribute, and adapt the work for non-commercial purposes, provided the original author(s) and source are credited appropriately. Further details are available on the official AMRJ Open Access policy page: <https://ois.amri.net/index.php/1/14>.

The concept of kinetic chain that underlines the notion of managing shoulder complication by involving comprehensive shoulder rehabilitation that includes not only treating involved shoulder structure but including proximal and distal segments in the treatment strategy⁶. Forward head posture a common problem observed in overhead athletes significantly contributes in shoulder dysfunction by altering the scapular kinematics⁷. The role of cervical spine is very important in coordinated movement pattern, visual acquisition and proprioception during overhead activities⁷⁻⁸. In particular the mobility of upper cervical and its stability is a key in maintaining postural alignment while allowing sequential activation required for throwing mechanics⁸. Although substantial evidence supports isolated scapular mobilization training and strengthening exercises in improving shoulder function⁹⁻¹⁰ yet limited researches are available that support combine approaches in managing the condition like shoulder dysfunction.

Upper cervical mobilization if applied properly can improve cervical mobility, forward head posture and scapular movement quality¹⁰. However, the potential effects of combining cervical mobilization and shoulder strengthening in improving scapular movement quality remains underexplored.

Manual therapy techniques, including mobilization with movement and corrective exercises, have demonstrated effectiveness in improving scapular positioning in swimmers with scapular dyskinesis¹¹. However, most rehabilitation programs for overhead athletes focus primarily on glenohumeral and scapular musculature while neglecting cervical spine assessment and intervention. This represents a significant gap in the current evidence base, as the cervical spine's influence on shoulder mechanics and athletic performance warrants systematic investigation.

In light of the evidences that are available on data search the present study is aimed to determine the combine effects of upper cervical mobilizations and strength training on throwing velocity, scapular movement quality and functional outcomes in overhead athletes suffering from scapular dyskinesis

METHODOLOGY

Study Design

Randomized Controlled trial was conducted and an envelope method was used to allocate participants in one of the two group while maintaining blinding of participants.

Study Setting

The study was conducted at two sites: Aftab Physiotherapy and Medical Centre and Rawal Institute of Health Sciences, between June 2024 and August 2025. Both facilities were equipped with necessary infrastructure for conducting physical therapy interventions and outcome assessments.

Sample Size Calculation

Sample size was calculated based on values obtained from a previous study titled "Scapular dyskinesis-based exercise therapy versus multimodal physical therapy for subacromial impingement syndrome in young overhead athletes with scapular dyskinesis: a randomized controlled trial¹²." The primary outcome measure used for calculation was shoulder flexion AROM at week 12. The mean \pm standard deviation for the SDBET group was 171.13 ± 5.15 degrees, and for the MPT group was 163.69 ± 5.07 degrees. Using these values with a power of 80% and a significance level of 0.05, a sample size of 16 participants (8 per group) was calculated. Anticipating a drop out, 50% increase in sample size was performed thereby raising a sample size to 24, n=12 participants in each group.

Participants

Inclusion Criteria

Inclusion criteria were based on following:

- Athletes involved in overhead movement more frequently like cricketers, swimmers indulge in any of the sports for past 6 month
- Both male and female of age 18-35 years
- Active participation in overhead sports for at least 6 months prior to enrollment
- Clinical diagnosis of scapular dyskinesis confirmed through visual assessment using the Scapular Dyskinesis Test
- Forward head posture having a cranivertebral angle of ≤ 50 degrees
- Upper cervical hypermobility confirmed through manual examination
- Ability to understand and follow instructions in English or Urdu

Exclusion Criteria

Exclusion Criteria was based on following:

- History of shoulder surgery or fracture in the past 12 months
- Current or recent (within 3 months) shoulder dislocation or subluxation
- Cervical spine pathology including disc herniation, radiculopathy, or myelopathy
- Systemic inflammatory conditions (e.g., rheumatoid arthritis, ankylosing spondylitis)
- Neurological disorders affecting upper extremity function
- Contraindications to manual therapy (e.g., vertebrobasilar insufficiency, cervical spine instability)
- Corticosteroid injection in the shoulder region within the past 6 weeks

Randomization and Allocation Concealment

Following baseline assessment and confirmation of eligibility, participants were randomly allocated to either the experimental or control group using computer-generated random numbers in sealed, opaque envelopes. The randomization sequence was prepared by an independent researcher not involved in participant recruitment or assessment. Allocation was performed by the principal investigator after baseline measurements were completed. Due to the nature of the intervention, participants and treating therapists could not be blinded to group allocation; however, the outcome assessor remained blinded to group assignment throughout the study.

Intervention Protocols

Experimental Group: Upper Cervical Mobilizations + Shoulder Strengthening

Participants in the experimental group received a combination of upper cervical mobilizations and shoulder strengthening exercises for 12 weeks, with three supervised sessions per week.

Upper Cervical Mobilization Protocol (15-20 minutes per session):

- C1-C2 rotation mobilization (Grade III-IV Maitland): 3 sets of 30-second oscillations bilaterally¹³.
- Suboccipital release: sustained pressure for 90 seconds bilaterally.
- Upper cervical flexion mobilization: 3 sets of 30-second oscillations.
- Cervical retraction exercises with overpressure: 3 sets of 10 repetitions.
- Deep neck flexor strengthening (chin tucks): 3 sets of 10 repetitions with 10-second holds.

Shoulder Strengthening Protocol (30-35 minutes per session):

- Scapular setting exercises: 3 sets of 15 repetitions.
- Serratus anterior strengthening (wall slides, push-up plus): 3 sets of 12 repetitions.
- Lower trapezius strengthening (prone Y, T, I exercise): 3 sets of 12 repetitions¹⁴.
- Middle trapezius strengthening (horizontal abduction): 3 sets of 12 repetitions.
- External rotation strengthening with resistance band: 3 sets of 15 repetitions.
- Internal rotation strengthening with resistance band: 3 sets of 15 repetitions.
- Scapular clock exercises: 2 sets in each direction.
- Closed kinetic chain exercises (quadruped position): 3 sets of 30 seconds.

Progression was implemented every 2 weeks based on individual tolerance and performance, with increases in resistance, repetitions, or exercise complexity.

Control Group: Shoulder Strengthening

Participants in the control group received only the shoulder strengthening protocol described above, also for 12 weeks with three supervised sessions per week (30-35 minutes per session). The same progression principles were applied. Both groups received education on posture correction, activity modification, and a home exercise program to be performed on non-supervised days.

Outcome Measures

Primary Outcome Measures

1. Shoulder Active ROM: Shoulder flexion, abduction, and external rotation AROM were measured using a universal goniometer following standardized protocols. Measurements were taken at baseline, 6 weeks, and 12 weeks. Participants performed three trials for each movement, and the average was recorded¹⁵.

2. Scapular Dyskinesis Test: Scapular movement quality was assessed using the Scapular Dyskinesis Test, a validated observational tool. Participants performed 5 repetitions of weighted shoulder flexion and abduction while being observed from the posterior view. Scapular dyskinesis was categorized as Type I (inferior angle prominence), Type II (medial border

prominence), Type III (superior border elevation), or normal. A video recorded assessment was performed and was evaluated by a physical therapist clinician of at least 10 years of experience along with a researcher¹⁶.

3. **Functional Throwing Performance Index:** Throwing velocity was assessed using a Bushnell 101911 device. A number of 10 maximal efforts of throws were performed by the participants and a mean of ten throw was taken for reporting the findings¹⁷.
4. **Disabilities of the Arm, Shoulder and Hand (DASH) Questionnaire:** Upper extremity function and symptoms were assessed by using a DASH. A questionnaire comprises of 30 items ranging from 0 to 100 with higher score reveals severity of symptoms¹⁸.

Data Collection Procedures

Data was collected by a researcher themselves. All measurement were taken at three different intervals at baseline, at week 6 and week 12. All participants were instructed to avoid any analgesic intake before assessment session.

Data Analysis Strategy

Data analyses were performed using a SPSS version 26. Descriptive analyses were reported in the form of mean and standard deviation. Continuous variables were reported in the form of frequency. Within group analyses was performed using a continuous measure Anova and between group analyses was performed using an independent t-test. Chi-square test was performed to determine association of intervention on the outcome between group.

Ethical Considerations

All principles of ethical consideration were given due consideration. Participants were informed regarding the purpose of study and a written consents were taken prior to inclusion. Ethical approval was taken from the Institutional Review Board of Rawal Institute of Health Sciences prior to participant recruitment (IRB#RHS-IRB/45-3-24).

The study was conducted in accordance with the Declaration of Helsinki and Good Clinical Practice guidelines.

RESULTS

Demographic Characteristics

A total number of n=24 participants were divided into two groups n=12 in each group. During the period of 12 weeks four participants were withdrew two from each group, hence 20 participants completed the study. The average age of the participants in experimental group was 24.83 ± 4.21 and in the control, group was 25.10 ± 3.95 years. The majority of the participants in both the group were male. In experimental group there were 7 male and 3 females where as in control group there were 8 males and 2 females. The details description of demographical characteristics was given in table 1:

Table 1. Baseline Demographic and Clinical Characteristics of Participants

Characteristic	Experimental Group (n=10)	Control Group (n=10)	p-value
Age (years), Mean \pm SD	24.83 ± 4.21	25.10 ± 3.95	0.881
Gender, n (%)			0.500
Male	7 (70%)	8 (75%)	
Female	3 (30%)	2 (25%)	
BMI (kg/m ²), Mean \pm SD	23.65 ± 2.18	24.12 ± 2.34	0.642
Sport Type, n (%)			0.756
Cricket	4 (40%)	4 (40%)	
Swimming	3 (30%)	2 (20%)	
Volleyball	2 (20%)	2 (20%)	
Throwball	1 (10%)	2 (20%)	
Years of Participation, Mean \pm SD	6.82 ± 2.45	7.15 ± 2.68	0.774
Craniovertebral Angle (degrees), Mean \pm SD	46.34 ± 2.87	45.92 ± 3.12	0.748

SD = Standard Deviation; BMI = Body Mass Index; Independent t-test and Chi-square test were used for continuous and categorical variables respectively

Shoulder Active ROM Outcomes

Both groups demonstrated significant improvements in all three movement directions over time ($p < 0.001$). At baseline, there were no significant differences between groups in shoulder flexion (experimental: 156.40 ± 6.82 degrees vs. control: 155.30 ± 7.15 degrees, $p = 0.724$), abduction (experimental: 162.80 ± 7.34

degrees vs. control: 161.50 ± 6.98 degrees, $p = 0.695$), or external rotation (experimental: 78.60 ± 5.42 degrees vs. control: 77.90 ± 5.68 degrees, $p = 0.776$).

At the 6-week assessment, the experimental group showed greater improvements compared to the control group in shoulder flexion (169.50 ± 5.67 vs. 164.20 ± 6.34 degrees, $p = 0.048$) and external rotation (87.30 ± 4.95 vs. 83.40 ± 5.21 degrees, $p = 0.091$), though the difference in external rotation did not reach statistical significance. By 12 weeks, the experimental group demonstrated significantly greater improvements in all three movements compared

to the control group. Shoulder flexion reached 178.90 ± 4.52 degrees in the experimental group versus 172.30 ± 5.28 degrees in the control group ($p = 0.005$), representing a between-group difference of 6.60 degrees. Shoulder abduction improved to 176.40 ± 5.18 degrees versus 170.80 ± 5.89 degrees ($p = 0.028$), and external rotation reached 94.70 ± 4.28 degrees versus 89.50 ± 4.76 degrees ($p = 0.015$).

Effect sizes (Cohen's d) for between-group differences at 12 weeks were large for flexion ($d = 1.35$), moderate for abduction ($d = 1.01$), and large for external rotation ($d = 1.15$) (Table 2).

Table 2. Shoulder Active ROM at Baseline, 6 Weeks, and 12 Weeks

Variable	Time Point	Experimental Group (n=10) Mean \pm SD	Control Group (n=10) Mean \pm SD	Between-Group p-value	Effect Size (Cohen's d)
Shoulder Flexion (degrees)	Baseline	156.40 ± 6.82	155.30 ± 7.15	0.724	0.16
	6 weeks	169.50 ± 5.67	164.20 ± 6.34	0.048*	0.89
	12 weeks	178.90 ± 4.52	172.30 ± 5.28	0.005**	1.35
Shoulder Abduction (degrees)	Baseline	162.80 ± 7.34	161.50 ± 6.98	0.695	0.18
	6 weeks	171.60 ± 6.12	167.40 ± 6.55	0.135	0.66
	12 weeks	176.40 ± 5.18	170.80 ± 5.89	0.028*	1.01
External Rotation (degrees)	Baseline	78.60 ± 5.42	77.90 ± 5.68	0.776	0.13
	6 weeks	87.30 ± 4.95	83.40 ± 5.21	0.091	0.77
	12 weeks	94.70 ± 4.28	89.50 ± 4.76	0.015*	1.15

* $p < 0.05$; * $p < 0.01$; Independent t-test was used for between-group comparisons

Functional Outcomes: Throwing Performance and Disability Scores

The functional throwing performance and DASH questionnaire scores are presented in Table 3. At baseline, both groups demonstrated comparable throwing velocity (experimental: 78.45 ± 6.23 km/h vs. control: 77.80 ± 6.54 km/h, $p = 0.821$), throwing accuracy (experimental: 5.60 ± 1.35 vs. control: 5.40 ± 1.43 , $p = 0.747$), and DASH scores (experimental: 32.85 ± 8.42 vs. control: 33.60 ± 7.98 , $p = 0.839$), indicating similar baseline functional limitations.

Following the intervention, the experimental group demonstrated superior improvements in functional throwing performance compared to the

control group. At 12 weeks, throwing velocity improved to 91.35 ± 5.78 km/h in the experimental group compared to 86.20 ± 6.15 km/h in the control group ($p = 0.049$), representing a mean increase of 12.90 km/h versus 8.40 km/h from baseline. Throwing accuracy scores improved more substantially in the experimental group (8.80 ± 0.92) compared to the control group (7.70 ± 1.06) at 12 weeks ($p = 0.018$).

The DASH questionnaire scores, which assess upper extremity disability, showed significant reductions in both groups, but the experimental group demonstrated greater improvement. At 12 weeks, the experimental group achieved a mean

DASH score of 11.25 ± 4.67 compared to 16.80 ± 5.34 in the control group ($p = 0.019$), indicating less disability and better functional recovery. Within-group repeated measures ANOVA revealed significant time effects for all functional

outcomes in both groups ($p < 0.001$), with post-hoc analyses showing progressive improvements from baseline to 6 weeks and from 6 weeks to 12 weeks (Table 3).

Table 3. Functional Throwing Performance and Disability Scores

Variable	Time Point	Experimental Group (n=10) Mean \pm SD	Control Group (n=10) Mean \pm SD	Between-Group p-value	Effect Size (Cohen's d)
Throwing Velocity (km/h)	Baseline	78.45 ± 6.23	77.80 ± 6.54	0.821	0.10
	6 weeks	85.80 ± 5.89	82.30 ± 6.28	0.201	0.57
	12 weeks	91.35 ± 5.78	86.20 ± 6.15	0.049*	0.87
Throwing Accuracy (out of 10)	Baseline	5.60 ± 1.35	5.40 ± 1.43	0.747	0.14
	6 weeks	7.40 ± 1.17	6.70 ± 1.25	0.196	0.58
	12 weeks	8.80 ± 0.92	7.70 ± 1.06	0.018*	1.11
DASH Score (0-100)	Baseline	32.85 ± 8.42	33.60 ± 7.98	0.839	0.09
	6 weeks	21.40 ± 6.35	24.70 ± 6.82	0.257	0.50
	12 weeks	11.25 ± 4.67	16.80 ± 5.34	0.019*	1.12

DASH = Disabilities of the Arm, Shoulder and Hand; $p < 0.05$; Independent t-test was used for between-group comparisons; Lower DASH scores indicate better function

Scapular Dyskinesis Classification

At baseline, both groups showed similar distributions of scapular dyskinesis patterns with no statistically significant differences ($p = 0.892$). The most prevalent pattern was Type II (medial border prominence), present in 50% of the experimental group and 40% of the control group, followed by Type I (inferior angle prominence) in 40% and 50% respectively, and Type III (superior border elevation) in 10% of each group.

No participants demonstrated normal scapular movement patterns at baseline. At the 12-week assessment, substantial improvements in scapular movement quality were observed in both groups, but the experimental group showed superior results. The findings revealed that in the experimental group a total of $n=60$ that comprises of 60% of the participants had achieved normal scapular movement compared to control group where only 3 participants (30%) had achieved

normal scapular function. Additionally, it was observed that in experimental group 30% of the participants had type I dyskinesis and 10% had type II with complete resolution of type III. Chi-square test revealed a significant difference in distribution of scapular dyskinesis in two groups ($p=0.041$) favoring experimental group over control group. Details were shown in Table 4.

DISCUSSION

The present study investigated the effects of combining upper cervical mobilizations with shoulder strengthening exercises compared to shoulder strengthening alone in overhead athletes with scapular dyskinesis and upper cervical hypermobility. The findings revealed that experimental group had shown greater improvement in all outcome measures that includes range of motion, throwing velocity, scapular movement and upper extremity function

Table 4. Scapular Dyskinesis Classification at Baseline and 12 Weeks

Scapular Dyskinesis Type	Experimental Group (n=10)	Control Group (n=10)	p-value
Baseline, n (%)			
Normal	0 (0%)	0 (0%)	
Type I (Inferior angle prominence)	4 (40%)	5 (50%)	
Type II (Medial border prominence)	5 (50%)	4 (40%)	0.892
Type III (Superior border elevation)	1 (10%)	1 (10%)	
12 Weeks, n (%)			
Normal	6 (60%)	3 (30%)	
Type I (Inferior angle prominence)	3 (30%)	2 (20%)	
Type II (Medial border prominence)	1 (10%)	4 (40%)	0.041*
Type III (Superior border elevation)	0 (0%)	1 (10%)	

*Chi-square test was used for categorical comparisons; $p < 0.05$ indicates significant difference in distribution between groups

The findings demonstrated that the experimental group achieved significantly greater improvements in shoulder active range of motion, functional throwing performance, scapular movement quality, and upper extremity function compared to the control group after 12 weeks of intervention.

The improvement in shoulder ROM as observed in the experimental group underline the interconnected mechanism of shoulder biomechanics¹⁹ that is in line with the concept of kinetic chain. A study that was conducted to examine the relationship between cervical spine position and shoulder function highlights that forward head posture significantly reduced shoulder ROM and altered scapular kinematics¹⁹. Likewise in another study it was observed that combining cervical spine mobilization with scapular exercises bring out greater effects in shoulder mobility in comparison to isolated interventions²⁰. These findings are in line with the findings of our study in which it was observed that

combining exercises protocol can bring out more effective results than isolated exercises protocol. The findings of our study suggesting an improving in the throwing velocity is in line with the findings of another study in which it was observed that combined cervical and shoulder rehabilitation in baseball player shown a significant improvement in the throwing velocity and shoulder pain²¹. Similarly in another study conducted on

volleyball players found that kinetic chain training combined with cervical exercises produces better results than isolated shoulder training alone²².

The reduction in DASH scores observed in both groups indicates meaningful improvements in upper extremity function, with the experimental group demonstrating significantly greater functional gains. Similar findings were observed in a study examining disability outcomes following multimodal shoulder rehabilitation, researchers reported that interventions addressing multiple segments of the kinetic chain produced larger reductions in disability scores compared to isolated approaches²³. Another investigation found that manual therapy techniques targeting the cervical spine, when combined with exercise therapy, resulted in faster and more substantial improvements in self-reported function in patients with shoulder dysfunction²⁴. These findings corroborate the present study's results and highlight the clinical significance of comprehensive treatment approaches.

The normalization of scapular movement patterns was notably higher in the experimental group, with 60% achieving normal scapular mechanics compared to 30% in the control group. A study investigating scapular dyskinesis treatment in overhead athletes reported that interventions addressing postural alignment and cervical positioning enhanced scapular correction rates²⁵. Similar results were observed in another trial where combined cervical and thoracic spine mobilization with scapular exercises produced

superior outcomes in correcting scapular dyskinesis compared to scapular exercises alone²⁶. These findings suggest that cervical spine dysfunction may be a contributing factor to persistent scapular dyskinesis, and addressing this proximal impairment facilitates more effective scapular rehabilitation.

The biomechanical rationale for the observed improvements can be explained by the cervical spine's influence on scapular positioning and upper extremity function. Forward head posture, characterized by reduced craniocervbral angles, has been shown to alter the length-tension relationships of cervical and scapular muscles, leading to compensatory movement patterns²⁷. In a study examining the immediate effects of cervical mobilization on scapular muscle activity, researchers found that cervical interventions improved serratus anterior and lower trapezius activation during overhead movements²⁸. Another investigation demonstrated that correcting forward head posture through cervical mobilization and exercise resulted in improved scapular upward rotation and posterior tilt during arm elevation²⁹. These mechanisms may explain why the experimental group in the present study achieved superior functional outcomes, as cervical mobilizations likely optimized the neuromuscular control and biomechanical positioning necessary for efficient scapular movement and shoulder function.

The clinical implications of these findings are substantial for rehabilitation professionals working with overhead athletes. The results suggest that comprehensive assessment and treatment of the entire upper quarter kinetic chain, including the cervical spine, should be prioritized in athletes presenting with scapular dyskinesis. The combination of upper cervical mobilizations with shoulder strengthening exercises appears to provide synergistic benefits that exceed those achieved through isolated shoulder rehabilitation. This integrated approach may lead to faster return to sport, improved athletic performance, and potentially reduced injury risk in overhead athlete populations.

The study limitation also needs to be highlighted first of which is the small sample size (n=20 completers) that limits the generalizability of findings. Another was the intervention duration that was 12-week although the effects were identified in the duration yet follow-up effects need to be identified that was not covered in the

study. Future research should include longer follow-up periods to assess maintenance of gains and recurrence rates.

CONCLUSION

The study findings revealed that cervical mobilization in combination with strength training has produced a beneficial effect in improving shoulder range of motion, throwing velocity, scapular movement quality and cervical hypermobility. The combine approach of cervical mobilization and strength training has brought out statistically significant effects in comparison to strength training alone.

Ethical Approval

Ethical approval was taken from the Institutional Review Board of Rawal Institute of Health Sciences prior to participant recruitment (IRB#RHS-IRB/45-3-24).

Author Contributions

SA: Conception & Design, Data Analysis & Interpretation, Manuscript Writing, Critical Revision

RK: Data Collection, Data Analysis & Interpretation, Manuscript Writing, Critical Revision

DL: Data Collection, Data Analysis & Interpretation, Manuscript Writing

All authors approved the final version of the manuscript to be published.

Grant Support and Funding Disclosure

None.

Conflict of Interests

No conflict of interest.

REFERENCES

1. Intelangelo L, Ignacio L, Mendoza C, Bordachar D, Jerez-Mayorga D, Barbosa AC. Supine scapular punch: An exercise for early phases of shoulder rehabilitation?. Clinical Biomechanics. 2022 Feb 1;92:105583. <https://doi.org/10.1016/j.clinbiomech.2022.105583>
2. Hickey D, Solvig V, Cavalheri V, Harrold M, McKenna L. Scapular dyskinesis increases the risk of future shoulder pain by 43% in asymptomatic athletes: a systematic review and meta-analysis. Br J Sports Med. 2018;52(2):102-110. <https://doi.org/10.1136/bjsports-2017-097559>
3. Khodaverdizadeh M, Rahimi NM, Esfahani M. A Systematic Review and Meta-analysis: The Effect of Scapular-focused Exercise Therapy on Shoulder Pain and Function and Scapular Positioning in People With Scapular Dyskinesis. Iranian Rehabilitation Journal. 2023 Dec 1;21(4). <http://dx.doi.org/10.32598/irj.21.4.1933.1>

4. Joo SY, Kim YK. Scapular Dyskinesis and Associated Factors in Adult Elite Swimmers. *Medicina*. 2025 Oct 21;61(10):1885. <https://doi.org/10.3390/medicina61101885>
5. Lawrence RL, Richardson LB, Bilodeau HL, Bonath DJ, Dahn DJ, Em MA, Sarkar S, Braman JP, Ludewig PM. Effects of scapular angular deviations on potential for rotator cuff tendon mechanical compression. *Orthopaedic Journal of Sports Medicine*. 2024 Feb;12(3):23259671231219023. <https://doi.org/10.1177/23259671231219023>
6. Sahrmann S, Azevedo DC, Dillen LV. Diagnosis and treatment of movement system impairment syndromes. *Braz J Phys Ther*. 2017;21(6):391-399. <https://doi.org/10.1016/j.bjpt.2017.08.001>
7. Yaghoubitajani Z, Gheitasi M, Bayattork M, Andersen LL. Corrective exercises administered online vs at the workplace for pain and function in the office workers with upper crossed syndrome: randomized controlled trial. *International archives of occupational and environmental health*. 2022 Oct;95(8):1703-18. <https://doi.org/10.1007/s00420-022-01859-3>
8. Blanpied PR, Gross AR, Elliott JM, Devaney LL, Clewley D, Walton DM, et al. Neck pain: revision 2017. *J Orthop Sports Phys Ther*. 2017;47(7):A1-A83. <https://www.jospt.org/doi/10.2519/jospt.2017.0302>
9. Para-García G, García-Muñoz AM, López-Gil JF, Ruiz-Cárdenas JD, García-Guillén AI, López-Román FJ, Pérez-Piñero S, Abellán-Ruiz MS, Cánovas F, Victoria-Montesinos D. Dry needling alone or in combination with exercise therapy versus other interventions for reducing pain and disability in subacromial pain syndrome: a systematic review and meta-analysis. *International Journal of Environmental Research and Public Health*. 2022 Sep;21(17):10961. <https://doi.org/10.3390/ijerph191710961>
10. Santos YS, Carneiro N, Franken M, de Jesus K, de Jesus K, Medeiros A. Comparison of isokinetic force of the internal and external rotators of the shoulders between swimmers of alternate and simultaneous techniques. *ISBS Proceedings Archive*. 2022;40(1):620. <https://commons.nmu.edu/isbs/vol40/iss1/149>
11. Huang TS, Ou HL, Lin JJ. Effects of trapezius kinesio taping on scapular kinematics and associated muscular activation in subjects with scapular dyskinesis. *Journal of Hand Therapy*. 2019 Jul 1;32(3):345-52. <https://doi.org/10.1016/j.jht.2017.10.012>
12. Naderifar H, Ghanbari L. Effect of selected corrective exercises on glenohumeral rotation ROM in overhead athletes with scapular dyskinesis. *Studia sportiva*. 2022 Aug 1;16(1):54-62. <https://doi.org/10.5817/STIS2022-1-6>
13. Wen M, Hu X, Bao G. Scapular dyskinesis-based exercise therapy versus multimodal physical therapy for subacromial impingement syndrome in young overhead athletes with scapular dyskinesis: a randomized controlled trial. *BMC Sports Sci Med Rehabil*. 2025;17(1):204. <https://doi.org/10.1186/s13102-025-01254-8>
14. Olguin-Huerta C, Araya-Quintanilla F, Moncada-Ramirez V, Estrella-Flores E, Cuyul-Vasquez I, Gutierrez-Espinoza H. Effectiveness of scapular mobilization in patients with primary adhesive capsulitis: A systematic review and meta-analysis. *Medicine*. 2023 Jun 2;102(22):e33929. DOI: <https://doi.org/10.1097/MD.00000000000033929>
15. Liao CN, Fan CH, Hsu WH, Chang CF, Yu PA, Kuo LT, Lu BL, Hsu RW. Twelve-week lower trapezius-centred muscular training regimen in university archers. *InHealthcare* 2022 Jan 17 (Vol. 10, No. 1, p. 171). MDPI. <https://doi.org/10.3390/healthcare10010171>
16. Wang L, Yu G, Zhang R, Wu G, He L, Chen Y. Positive effects of neuromuscular exercises on pain and active ROM in idiopathic frozen shoulder: a randomized controlled trial. *BMC Musculoskeletal Disorders*. 2023 Jan 20;24(1):50. <https://doi.org/10.1186/s12891-023-06173-8>
17. Sciascia A, Kibler WB. Current views of scapular dyskinesis and its possible clinical relevance. *International journal of sports physical therapy*. 2022 Feb 2;17(2):117. <https://doi.org/10.26603/001c.31727>
18. Joshi R, Pohekar V. Correlation of resting scapular position and functional throwing performance index among amateur basketball players: An observational study. *MGM Journal of Medical Sciences*. 2022 Jul 1;9(3):325-9. https://doi.org/10.4103/mgmj.mgmj_54_22
19. Galardini L, Coppari A, Pellicciari L, Ugolini A, Piscitelli D, La Porta F, Bravini E, Vercelli S. Minimal clinically important difference of the disabilities of the arm, shoulder and hand (DASH) and the shortened version of the DASH (QuickDASH) in people with musculoskeletal disorders: A systematic review and meta-analysis. *Physical Therapy*. 2024 May 1;104(5):pzae033. <https://doi.org/10.1093/ptj/pzae033>
20. Kang NY, Kim K. Effects of a combination of scapular stabilization and thoracic extension exercises on respiration, pain, craniovertebral angle and cervical ROM in elementary school teachers with a forward head posture: A randomized controlled trial. *Journal of the Korean Society of Physical Medicine*. 2022;17(2):29-40. <https://doi.org/10.13066/kspm.2022.17.2.29>
21. Gutiérrez-Espinoza H, Pinto-Concha S, Sepúlveda-Ossetes O, Araya-Quintanilla F. Effectiveness of scapular mobilization in people with subacromial impingement syndrome: a randomized controlled trial. *Annals of physical and rehabilitation medicine*. 2023 Jun 1;66(5):101744. <https://doi.org/10.1016/j.rehab.2023.101744>
22. Zhang H, Jiang Q, Li A. The impact of resistance-based training programs on throwing performance and throwing-related injuries in baseball players: A systematic review. *Heliyon*. 2023 Dec 1;9(12). <https://doi.org/10.1016/j.heliyon.2023.e22797>
23. Chang CC, Chang CM, Shih YF. Kinetic chain exercise intervention improved spiking consistency and kinematics in volleyball players with scapular dyskinesis. *The Journal of Strength & Conditioning Research*. 2022 Oct 1;36(10):2844-52. <https://doi.org/10.1519/sc.0000000000003904>
24. Missmann M, Gollner K, Schroll A, Pirchl M, Grote V, Fischer MJ. Impact of Different Isokinetic Movement Patterns on Shoulder Rehabilitation Outcome. *International journal of environmental research and public health*. 2022 Aug 25;19(17):10623. <https://doi.org/10.3390/ijerph191710623>
25. Paraskevopoulos E, Plakoutsis G, Chronopoulos E, Maria P. Effectiveness of combined program of manual therapy and exercise vs exercise only in patients with rotator cuff-related shoulder pain: a systematic review and meta-analysis. *Sports Health*. 2023 Sep;15(5):727-35. <https://doi.org/10.1177/19417381221136104>
26. Kamonseki DH, Haik MN, Ribeiro LP, Almeida RF, Camargo PR. Scapular movement training is not superior to standardized exercises in the treatment of individuals with chronic shoulder pain and scapular dyskinesis: randomized controlled trial. *Disability and Rehabilitation*. 2023 Aug 28;45(18):2925-35. <https://doi.org/10.1080/09638288.2022.2114552>
27. Kang K, KOREA S. Correlation between Cranio-Vertebral Angle and Muscle Activity According to Body Movements in Forward Head Posture. *Cranio*.

2024;13(14):4. DOI: 10.37394/23208.2024.21.28
<https://doi.org/10.37394/23208.2024.21.28>

28. Kang T, Kim B. Cervical and scapula-focused resistance exercise program versus trapezius massage in patients with chronic neck pain: A randomized controlled trial. *Medicine*. 2022 Sep 30;101(39):e30887. <https://doi.org/10.1097/md.00000000000030887>

29. Abd El-Azeim AS, Mahmoud AG, T MOHAMED M, El-Khateeb YS. Impact of adding scapular stabilization to postural correctional exercises on symptomatic forward head posture: a randomized controlled trial. *European journal of physical and rehabilitation medicine*. 2022 Jun 8;58(5):757. <https://doi.org/10.23736/S1973-9087.22.07361-0>