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ABSTRACT

Background: Skin diseases, ranging from mild benign lesions to life-threatening malignant conditions, remain a major global health
concern. Early and accurate diagnosis is critical to avoid complications, yet this is often limited by the shortage of dermatologists
and the subjective nature of visual inspections, particularly in low-resource settings. To address this challenge, this study proposes
an automated deep learning framework for skin disease classification using dermoscopic images.

Methods: The framework employs a hybrid learning approach by integrating transfer learning and ensemble learning techniques.
Specifically, MobileNetV2 and EfficientNetB3 models were combined to leverage their unique strengths, thereby enhancing
generalization and predictive accuracy. The system was trained on a well-annotated dataset of 22,177 dermoscopic images,
representing eight diagnostic categories that include benign, malignant, and pre-cancerous skin conditions.

Results: Experimental results demonstrated strong classification performance, achieving a training accuracy of 96.81%, validation
accuracy of 87.66% (loss of 0.455), and test accuracy of 86%. To improve clinical trust and interpretability, Gradient-weighted
Class Activation Mapping (Grad-CAM) was utilized to highlight the image regions that contributed most to the model’s decisions.
In addition, a user-friendly diagnostic interface was developed, enabling real-time image input, automated analysis, and clear
interpretive guidance. This makes the system accessible not only to healthcare providers but also to non-specialists, bridging gaps
in dermatological care.

Conclusion: The proposed solution offers a reliable, interpretable, and scalable application of artificial intelligence for skin disease
screening, with significant implications for tele-dermatology and seamless integration into clinical workflows.
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INTRODUCTION
Skin diseases, benign and malignant, are Artificial  intelligence  (Al), and, more

among the most widespread health issues
worldwide and a significant part of primary care
consultation, especially in the low- and middle-
income countries (LMICs).! It is crucial to have
an early diagnosis, more so in the case of
melanoma, which can be fatal when it is
diagnosed late.? Nonetheless, diagnosis has
conventionally been based on the skills of
dermatologists and dermoscopic imaging,
which is inaccessible in most of the rural and
underserved regions.? Also, traditional clinical
methods can be prone to observer bias and
misunderstanding.*

specifically, deep learning (DL), demonstrates
the potential of enhanced diagnostic accuracy,
scalability, and efficiency.>¢ Convolutional
neural networks (CNNs) have shown
extraordinary performance in the feature
extraction as well as image classification.” Our
work is based on the idea that we introduce a
new framework of transfer learning and
ensemble learning by combining MobileNetV2
and EfficientNetB3 to optimize the outcome.
The transfer learning facilitates adaption of
large-scale pretrained models to medical
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imaging and the ensemble methods enhance
generalizability.8°

We trained our model and tested it on a
randomized sample of 22,177 dermoscopic
images of 8 diagnostic classes. The findings
proved 96.81% and high training accuracy and
classification potential, which reduces chances
of misdiagnosis in actual clinical practices.
Gradient-weighted Class Activation Mapping
(Grad-CAM) was also used to improve the
interpretability, which proved that the model
would always focus on clinically relevant
regions.1® Also, a user-friendly web interface
has been created, as it allows real time
predictions and visual feedback to
dermatologists, general practitioners, and
telehealth providers.

Overall, this research provides a scalable,
easy-to-understand, and high-performing
system for automatic skin  disease
classification, which has strong potential to be
used in clinical decision-support systems and
teledermatology settings.The variety of skin
diseases is vast, and these can be both mild
infections and serious cancers that can lead to
death like melanoma. Their spread is on the
rise all over the world because of various
reasons such as urbanization, pollution,
climate change and changes in lifestyles.’
Melanoma and non-melanoma skin cancers
represent a large fraction of cancer in the world
and melanoma is highly metastatic and the
most fatal of the two forms.12 Diagnosis should
therefore be done at an early stage since early
intervention significantly enhances better
prognosis and survival in malignant lesions of
the skin.

Historical practice in diagnosis is based on the
visual examination and dermoscopy by the
dermatologist. Nevertheless, these
approaches are subjective, they can also be
inter-observer variants, and they are restricted
due to the lack of dermatological skills,
especially with low resources and rural
locations!®. These constraints underscore the
importance of automated, scalable, and
precise diagnostic instruments to help
clinicians and increase access to underserved
communities. The recent progress in the
analysis of medical images, especially deep

learning (DL) and computer vision has
revolutionized dermatological studies.
Convolutional Neural Networks (CNNs) have
demonstrated good results in a range of
classification, segmentation, and feature
extraction and can often compete with
dermatologists.’* CNNs unlike the traditional
methods learn hierarchical features directly on
the raw pixels making them more efficient and
accurate. Transfer learning has made
additional contributions to this area by
modifying existing pretrained architectures
(e.g., EfficientNet and MobileNetV2) to medical
imaging.’®> EfficientNet applies depth, width
and resolution scaling in an optimized
manner®1” and MobileNetV2 is small and can
be used in a mobile setting or an embedded
system.18.19

The other essential clinical adoption factor is
interpretability.  Gradient-weighted  Class
Activation Mapping (Grad-CAM) allows one to
visualize the parts of an image that affect the
predictions made by a model, which in turn
promotes the development of trust and
validation in clinicians.?® Likewise, ensemble
learning, which is a composite of multiple
models, to increase the strength, decrease
misclassification and promote generalizability
is especially useful due to the intra-class
similarites of dermatological lesions.?1:22
Training and validation of strong DL models
have been achieved due to the presence of
huge dermoscopic data sets, such as
HAM10000, ISIC Archive, and DermNet23.
Nonetheless, class imbalance is always an
issue, and sometimes augmentation or
resampling techniques are necessary.

The main objective of this study is to develop a
hybrid deep learning model that combines
EfficientNetB3 and MobileNetV2 architectures
for accurate and interpretable classification of
skin diseases. The proposed model aims to
enhance diagnostic performance across eight
dermatological categories using a carefully
curated dataset. Additionally, the research
seeks to design a user-friendly
teledermatology interface that allows both
clinicians and patients to easily access and
utilize the system in clinical and remote
healthcare settings.
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METHODOLOGY

Data Preparation for Model Training

The extraction of the dataset was an important
step in assuring the validity and the
performance of the proposed model. The
dataset utilized in the present study is the
HAM210000 dataset of the International Skin
Imaging Collaboration (ISIC), which comprises
11,720 dermoscopic images, which were
assigned labels by a group of dermatologists,
based on eight different categories: Actinic
Keratosis, Basal Cell Carcinoma,
Dermatofibroma, Melanoma, Nevus, Pigmented
Benign Keratosis, Squamous Cell Carcinoma,
and Vascular Lesions. These images were also
made to have 256x256 pixels and preprocesses
included shuffling, batching (32) and label
coding. The images were also normalized in the
0-1 range in order to boost model learning and
also became augmented by means of medically
suitable approaches like rotations, flips, and
zooms due to the lesser data and shows in
Table I. This served to balance the dataset and
minimize the risk of overfitting and finally
increased the dataset to 22,177 images. The
more rare classes were increased more, such
as Vascular Lesions and Squamous Cell
Carcinoma but the most common Nevus class
did not change. WeB3D divided the dataset into
training (70%), validation (20%), and test (10%)
sets, which presented both a balanced training
set and monitoring set and an unbiased
evaluation set.

Table-1 Distribution of original and augmented
images across eight skin disease classes

No. of No. of Total No.
Classes original Augmented of
images images images
Basal Cell
Carcinoma 619 2,319 2,938
Melanoma 1,305 1,695 2,861
Squamous Cell
Carcinoma 229 2,387 2,616
Vascular
Lesion 180 2,475 2,655
Pigmented 1,662 2,871
Benign 1,338
Keratosis
Actinic 149 2,458 2,607
Keratosis

2,629
Dermatofibroma 160 2,469

Nevus 7,737 - 3,000

Model Building and Architectural Discovery
Four convolutional neural network (CNN)
models were constructed and evaluated against
each other:

e Model A (Hybrid- ResNet50 + VGG16)
Hybrid deep residual learning with high
spatial representation was not sparse in
parameters.

e Model B (Lightweight Hybrid-
EfficientNetB3 + MobileNetV2)
Known as the efficiency-oriented one, it
used the concept of compound scaling and
depth-wise separable convolution to make
the computation less expensive with
efficiency and feature retrieval intact.

e Model C (Regularized Hybrid)
Model B with dropout, batch normalization,
and global average pooling to stabilize the
training process and minimize overfitting.

e Model D (Task-Tuned Hybrid)

The final selected design is shown in Fig.
1. It was based on EfficientNetB3 and
MobileNetV2 backbones and custom
convolutional layers, ReLU activation, and
MaxPooling to learn dermatology specific
patterns. A global average pooling layer
maintained spatial detail, batch
normalization enhanced training, dropout
(0.5) enhanced regularization to enhance
training. The last classification layer
applied the softmax activation with eight
classes.

Model D was shown to have the most
accurate, efficient and clinical relevant
balance, having the benefit of transfer
learning and with dermatology specific
refinements.
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Fig.1 Architecture of task tuned Hybrid model

Training Configuration

The Adam optimizer used and sparse
categorical cross-entropy loss were used to
train the model. An early-stopping (not more
than 15 epochs) and a learning rate scheduler
avoided overfitting. The training was
implemented on Kaggle Tesla T4 GPU (CUDA
12.6) based on the metric of accuracy.

Model Evaluation

Testing on the test set used accuracy, precision,
recall, and Fl-score and the macro and
weighted averages were reported to take into
account the imbalance in the classes. Findings
affrmed that the model had good
generalizability and had a strong predictive
accuracy in various skin conditions.

Interpretability with Grad-CAM.
Gradient-weighted Class Activation Mapping
(Grad-CAM) was then used to enhance the
transparency of the last convolutional layer.
Heatmaps were used to identify the areas that
made the greatest contribution to predictions,
which validated that the model was paying
attention to clinically relevant factors and not a
background noise. This was a step of
interpretation that enhanced confidence in the
reliability of the model to be used medically.

Overall Performance Using Custom Metrics
Even though the most commonly used
evaluation indicators are accuracy and loss,
they may not be adequate to evaluate a model
performance in multi-class and imbalanced
classification problems. To have a better
analysis of the final model, the Task-Tuned

Hybrid Model was tested on based on the
precision, recall and F1-score metrics.

Evaluation of the Final Model

Based on the comparative results, Model D was
selected as the final architecture for further
evaluation. The following sections present an in-
depth analysis of its performance using
additional metrics and visualization techniques.

Interface Development

A user-friendly interface was developed with
Streamlit to be used in a practical deployment.
It allows users to upload pictures, get
predictions and real-time Grad-CAM overlays,
without its technical knowledge. With the
combination of TensorFlow and OpenCV, the
system facilitates effective and convenient
application in the clinical practice especially in
areas with limited resources.

Summary of Model Performance

Table-2 shows the values of training, validation,
and test accuracy, and loss of the four
developed models. It accentuates the
development of the performance of the first
hybrid model to the last optimized task specific
model.

Class-Wise Performance Analysis

Although standard measures of model
evaluation are accuracy and loss, which do not
necessarily represent performance in multi-
class or unbalanced classification problems. To
give a more detailed evaluation Task-Tuned
Hybrid Model was also tested in terms of
precision, recall, and F1-score.
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Table-2. Comparative Performance Metrics of All Models

Models Iéihr:’:cgy Training loss Validation Accuracy Validation loss  Test accuracy |_T§§;
Model A 62.08% 1.034 40.69% 2.271 56% 1.293
Model B 90% 0.2712 75% 0.9362 73% 0.79
Model C 81.95% 0.0950 83.79% 0.464 83% 0.460
Model D 96.81% 0.490 87.66% 0.455 86% 0.411

The model was found to be accurate to the
extent of 0.97 which means that 97 percent of
the positive predictions were true. It had a recall
of 0.96 indicating good identification of 96% of
true positive, and F1l-score of 0.98, which
indicates the perfect mix of precision and recall
as illustrated in Table-3.

These uniform high scores indicate that model
has strong reliability and balanced predictive
potential that can be potentially useful in terms
of real and interpretable classification of skin
diseases across various categories.

Table-3 Class-Wise Distribution

Class l\(l:aI;S:s Precision Recall F1-Score
0 Nevus 0.70 0.74 0.72
1 Actinic Keratosis 0.82 0.88 0.85
2 Basal Cell Carcinoma 0.82 0.69 0.75
3 Dermatofibroma 0.85 0.89 0.87
4 Melanoma 0.50 0.58 0.54
5 Pigmented Benign Keratosis 0.58 0.45 0.51
6 Squamous Cell Carcinoma 0.65 0.73 0.68
7 Vascular Lesion 0.97 0.95 0.96

Interpretability Grad-CAM
Visualizations

To understand the model predictions and what
the model focused on during classification,
Gradient-weighted Class Activation Mapping
(Grad-CAM) was used. Grad-CAM produces
heatmaps, which are used to show the most
significant regions of an image that led to the
model decision. Fig. 2 makes side-by-side
comparisons of original test images and their
Grad-CAM overlaid images, showing the areas
where the model focused during prediction.
Such visualizations are evidence of the model
capability to localize clinically relevant features,
which demonstrates the fact that its decisions
are based on dermatological patterns. This
interpretability does not only confirm the
reliability of the model decision-making process
but also enhances its possibility to be used in

through

the diagnosis of skin diseases with the

trustworthiness of clinical use.

DISCUSSION

This paper has shown that the classification of
multi-class skin disease can be significantly
enhanced by an effective architectural polishing
instead of merely adding complexity to the
models. Having substituted heavy and less
compatible backbone networks with lightweight,
pretrained models, including EfficientNetB3 and
MobileNetV2, and introducing several other
improvements, including the use of more
convolutional layers, dropout, batch
normalization, and global average pooling, the
proposed hybrid model found an effective
balance between the accuracy, generalizability,
and interpretability.
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Fig.2 Comparison of original and Grad-CAM heatmap visualizations for the model’s predictions

The test accuracy of 86 and high precision and
recall rates show that the model has a high level
of reliability in categorizing skin diseases with low
chances of misclassifying. These results
correspond to the recent literature to the point
that too much complexity may result in overfitting
and poor practical utility.

Grad-CAM visualizations also confirmed the
interpretability of the model clinically as they
indicated that the model predictions were guided
by medically sensitive parts of the skin images.
This enhances the confidence in the model
decision-making process and promotes its
The other limitation is related to the composition
of the dataset, as it was not as diverse in the skin
tone and demographic composition. These
biases may influence the generalization of
models on other populations and geographical
areas. Moreover, the model architecture is
computationally less expensive than most deep
networks, but a more thorough analysis of the
computational demands and scalability on low-
resource hardware (e.g. mobile devices or rural
clinic systems) is needed before scaling to large
scale. Lastly, the paper fails to exhaust the
practical implementation of this model in clinical
practice. Practical implementation would involve
clinical validation, user education, ethics, and
EHR integrability. The consideration of these
points in the workplace will be important in
ensuring safe and effective implementation of the

potential application to the use of the model as a
decision-support  tool in  clinical and
teledermatology practice. Nonetheless, there are
a number of critical drawbacks that should be
noted. The model demonstrated relatively low
performance in detecting melanoma, which is
one of the most difficult conditions of the skin to
detect because of its visual similarity to benign
lesions and inter-class variability. Also, the cases
of failure showed that sometimes the model was
not able to work with low-quality or darkened
images, which should be improved, and the data
should be further preprocessed through image
enhancement.

Al-based dermatological tool in the daily health
establishment practice.

To conclude, although the proposed model is
performing promisingly and has interpretability,
future studies must emphasize on the perfection
of melanoma detection, improve the diversity of
datasets, determine the scalability of the model,
and create deployment options that are
compliant with clinical workflow realities.

Limitations

Although these are promising results, there are a
number of limitations that need to be mentioned.
The model showed relatively worse results in
recognition of melanoma, which is a category
that is still especially tricky because of its
unobtrusive and changeable appearance. Also,
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the data used was filtered and low in diversity
that can limit the applicability of the model into
the clinical setting where the quality of images,
light, and skin tones differ dramatically. Thus, the
arguments related to the reduction of false
positives and false negatives should be
perceived with  caution, because the
performance may vary depending on the types of
diseases and population groups.

Recommendations

The future work will be aimed at a number of
directions. First, it will be possible to increase the
size of the dataset to cover various populations,
imaging devices, and clinical settings to
decrease bias and increase the robustness of the
models. Second, melanoma detection will be
enhanced by targeting augmentation of data,
ensemble learning, and attention-based
mechanisms. Third, full real-world validation in
partnership  with  dermatologists will be
undertaken to determine the value of the system
diagnostics and usefulness during the clinical
processes. Lastly, consideration of
computational efficiency and deployment
suitability in healthcare organizations with limited
resources will be given a high priority to make the
model accessible and viable in the international
application of teledermatology.

CONCLUSION

This paper presented an advanced deep
learning architecture in the classification of
multi-class skin diseases based on
lightweight pretrained backbones, with a set
of extra convolutional layers and
regularization methods, including dropout,
batch normalization, and global average
pooling. The hybrid model was observed to
produce significant results, and the training,
validation, and test accuracy were 96.81,
87.66 and 86, respectively. The evaluation
metrics such as its precision (0.97), and
recall (0.96) show that the model is
consistent in thedifferentiating between the
various dermatological classes. Moreover,
Grad-CAM visualizations were also very
easy to interpret, and confirmed the model
focus to be clinically relevant, which
increased confidence in the model
prediction.
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