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 INTRODUCTION 
Skin diseases, benign and malignant, are 

among the most widespread health issues 

worldwide and a significant part of primary care 

consultation, especially in the low- and middle-

income countries (LMICs).1 It is crucial to have 

an early diagnosis, more so in the case of 

melanoma, which can be fatal when it is 

diagnosed late.2 Nonetheless, diagnosis has 

conventionally been based on the skills of 

dermatologists and dermoscopic imaging, 

which is inaccessible in most of the rural and 

underserved regions.3 Also, traditional clinical 

methods can be prone to observer bias and 

misunderstanding.4 

Artificial intelligence (AI), and, more 

specifically, deep learning (DL), demonstrates 

the potential of enhanced diagnostic accuracy, 

scalability, and efficiency.5,6 Convolutional 

neural networks (CNNs) have shown 

extraordinary performance in the feature 

extraction as well as image classification.7 Our 

work is based on the idea that we introduce a 

new framework of transfer learning and 

ensemble learning by combining MobileNetV2 

and EfficientNetB3 to optimize the outcome. 

The transfer learning facilitates adaption of 

large-scale pretrained models to medical 
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ABSTRACT 
 
Background: Skin diseases, ranging from mild benign lesions to life-threatening malignant conditions, remain a major global health 
concern. Early and accurate diagnosis is critical to avoid complications, yet this is often limited by the shortage of dermatologists 
and the subjective nature of visual inspections, particularly in low-resource settings. To address this challenge, this study proposes 
an automated deep learning framework for skin disease classification using dermoscopic images.  
 
Methods: The framework employs a hybrid learning approach by integrating transfer learning and ensemble learning techniques. 
Specifically, MobileNetV2 and EfficientNetB3 models were combined to leverage their unique strengths, thereby enhancing 
generalization and predictive accuracy. The system was trained on a well-annotated dataset of 22,177 dermoscopic images, 
representing eight diagnostic categories that include benign, malignant, and pre-cancerous skin conditions. 
 
Results: Experimental results demonstrated strong classification performance, achieving a training accuracy of 96.81%, validation 
accuracy of 87.66% (loss of 0.455), and test accuracy of 86%. To improve clinical trust and interpretability, Gradient-weighted 
Class Activation Mapping (Grad-CAM) was utilized to highlight the image regions that contributed most to the model’s decisions. 
In addition, a user-friendly diagnostic interface was developed, enabling real-time image input, automated analysis, and clear 
interpretive guidance. This makes the system accessible not only to healthcare providers but also to non-specialists, bridging gaps 
in dermatological care.  
 
Conclusion: The proposed solution offers a reliable, interpretable, and scalable application of artificial intelligence for skin disease 
screening, with significant implications for tele-dermatology and seamless integration into clinical workflows.    
 

Keywords: Deep Learning, Dermoscopic Images, Transfer Learning, Tele-dermatology, Skin Disease Classification. 
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imaging and the ensemble methods enhance 

generalizability.8,9 

 

We trained our model and tested it on a 

randomized sample of 22,177 dermoscopic 

images of 8 diagnostic classes. The findings 

proved 96.81% and high training accuracy and 

classification potential, which reduces chances 

of misdiagnosis in actual clinical practices. 

Gradient-weighted Class Activation Mapping 

(Grad-CAM) was also used to improve the 

interpretability, which proved that the model 

would always focus on clinically relevant 

regions.10 Also, a user-friendly web interface 

has been created, as it allows real time 

predictions and visual feedback to 

dermatologists, general practitioners, and 

telehealth providers. 

 

Overall, this research provides a scalable, 

easy-to-understand, and high-performing 

system for automatic skin disease 

classification, which has strong potential to be 

used in clinical decision-support systems and 

teledermatology settings.The variety of skin 

diseases is vast, and these can be both mild 

infections and serious cancers that can lead to 

death like melanoma. Their spread is on the 

rise all over the world because of various 

reasons such as urbanization, pollution, 

climate change and changes in lifestyles.11 

Melanoma and non-melanoma skin cancers 

represent a large fraction of cancer in the world 

and melanoma is highly metastatic and the 

most fatal of the two forms.12 Diagnosis should 

therefore be done at an early stage since early 

intervention significantly enhances better 

prognosis and survival in malignant lesions of 

the skin. 

 

Historical practice in diagnosis is based on the 

visual examination and dermoscopy by the 

dermatologist. Nevertheless, these 

approaches are subjective, they can also be 

inter-observer variants, and they are restricted 

due to the lack of dermatological skills, 

especially with low resources and rural 

locations13. These constraints underscore the 

importance of automated, scalable, and 

precise diagnostic instruments to help 

clinicians and increase access to underserved 

communities. The recent progress in the 

analysis of medical images, especially deep 

learning (DL) and computer vision has 

revolutionized dermatological studies. 

Convolutional Neural Networks (CNNs) have 

demonstrated good results in a range of 

classification, segmentation, and feature 

extraction and can often compete with 

dermatologists.14 CNNs unlike the traditional 

methods learn hierarchical features directly on 

the raw pixels making them more efficient and 

accurate. Transfer learning has made 

additional contributions to this area by 

modifying existing pretrained architectures 

(e.g., EfficientNet and MobileNetV2) to medical 

imaging.15 EfficientNet applies depth, width 

and resolution scaling in an optimized 

manner16,17 and MobileNetV2 is small and can 

be used in a mobile setting or an embedded 

system.18,19 

 

The other essential clinical adoption factor is 

interpretability. Gradient-weighted Class 

Activation Mapping (Grad-CAM) allows one to 

visualize the parts of an image that affect the 

predictions made by a model, which in turn 

promotes the development of trust and 

validation in clinicians.20 Likewise, ensemble 

learning, which is a composite of multiple 

models, to increase the strength, decrease 

misclassification and promote generalizability 

is especially useful due to the intra-class 

similarities of dermatological lesions.21,22 

Training and validation of strong DL models 

have been achieved due to the presence of 

huge dermoscopic data sets, such as 

HAM10000, ISIC Archive, and DermNet23. 

Nonetheless, class imbalance is always an 

issue, and sometimes augmentation or 

resampling techniques are necessary. 

 

The main objective of this study is to develop a 

hybrid deep learning model that combines 

EfficientNetB3 and MobileNetV2 architectures 

for accurate and interpretable classification of 

skin diseases. The proposed model aims to 

enhance diagnostic performance across eight 

dermatological categories using a carefully 

curated dataset. Additionally, the research 

seeks to design a user-friendly 

teledermatology interface that allows both 

clinicians and patients to easily access and 

utilize the system in clinical and remote 

healthcare settings. 
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METHODOLOGY 
   

 Data Preparation for Model Training 

The extraction of the dataset was an important 

step in assuring the validity and the 

performance of the proposed model. The 

dataset utilized in the present study is the 

HAM10000 dataset of the International Skin 

Imaging Collaboration (ISIC), which comprises 

11,720 dermoscopic images, which were 

assigned labels by a group of dermatologists, 

based on eight different categories: Actinic 

Keratosis, Basal Cell Carcinoma, 

Dermatofibroma, Melanoma, Nevus, Pigmented 

Benign Keratosis, Squamous Cell Carcinoma, 

and Vascular Lesions. These images were also 

made to have 256x256 pixels and preprocesses 

included shuffling, batching (32) and label 

coding. The images were also normalized in the 

0-1 range in order to boost model learning and 

also became augmented by means of medically 

suitable approaches like rotations, flips, and 

zooms due to the lesser data and shows in 

Table I. This served to balance the dataset and 

minimize the risk of overfitting and finally 

increased the dataset to 22,177 images. The 

more rare classes were increased more, such 

as Vascular Lesions and Squamous Cell 

Carcinoma but the most common Nevus class 

did not change. WeB3D divided the dataset into 

training (70%), validation (20%), and test (10%) 

sets, which presented both a balanced training 

set and monitoring set and an unbiased 

evaluation set.  

 

Table-1 Distribution of original and augmented 
images across eight skin disease classes 

Classes 
No. of 

original 
images 

No. of 
Augmented 

images 

Total No. 
of 

images 

Basal Cell 
Carcinoma 

619 2,319 2,938 

Melanoma 1,305 1,695 2,861 

Squamous Cell 
Carcinoma 

229 2,387 2,616 

Vascular     
Lesion 

180 2,475 2,655 

Pigmented 
Benign 

Keratosis 
1,338 

1,662 

 

2,871 

 

Actinic 
Keratosis 

149 2,458 2,607 

Dermatofibroma 160 2,469 

2,629 

 

Nevus 7,737 - 3,000 

 

Model Building and Architectural Discovery  

Four convolutional neural network (CNN) 

models were constructed and evaluated against 

each other: 

 

 Model A (Hybrid- ResNet50 + VGG16) 

Hybrid deep residual learning with high 

spatial representation was not sparse in 

parameters.  

 

 Model B (Lightweight Hybrid- 

EfficientNetB3 + MobileNetV2) 

Known as the efficiency-oriented one, it 

used the concept of compound scaling and 

depth-wise separable convolution to make 

the computation less expensive with 

efficiency and feature retrieval intact.  

 

 Model C (Regularized Hybrid) 

Model B with dropout, batch normalization, 

and global average pooling to stabilize the 

training process and minimize overfitting.  

 

 Model D (Task-Tuned Hybrid) 

The final selected design is shown in Fig. 

1. It was based on EfficientNetB3 and 

MobileNetV2 backbones and custom 

convolutional layers, ReLU activation, and 

MaxPooling to learn dermatology specific 

patterns. A global average pooling layer 

maintained spatial detail, batch 

normalization enhanced training, dropout 

(0.5) enhanced regularization to enhance 

training. The last classification layer 

applied the softmax activation with eight 

classes.  

 

Model D was shown to have the most 

accurate, efficient and clinical relevant 

balance, having the benefit of transfer 

learning and with dermatology specific 

refinements. 
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Fig.1 Architecture of task tuned Hybrid model 

 

 

Training Configuration 

The Adam optimizer used and sparse 

categorical cross-entropy loss were used to 

train the model. An early-stopping (not more 

than 15 epochs) and a learning rate scheduler 

avoided overfitting. The training was 

implemented on Kaggle Tesla T4 GPU (CUDA 

12.6) based on the metric of accuracy. 

 

Model Evaluation 

Testing on the test set used accuracy, precision, 

recall, and F1-score and the macro and 

weighted averages were reported to take into 

account the imbalance in the classes. Findings 

affirmed that the model had good 

generalizability and had a strong predictive 

accuracy in various skin conditions. 

 

Interpretability with Grad-CAM. 

Gradient-weighted Class Activation Mapping 

(Grad-CAM) was then used to enhance the 

transparency of the last convolutional layer. 

Heatmaps were used to identify the areas that 

made the greatest contribution to predictions, 

which validated that the model was paying 

attention to clinically relevant factors and not a 

background noise. This was a step of 

interpretation that enhanced confidence in the 

reliability of the model to be used medically. 

 

Overall Performance Using Custom Metrics 

Even though the most commonly used 

evaluation indicators are accuracy and loss, 

they may not be adequate to evaluate a model 

performance in multi-class and imbalanced 

classification problems. To have a better 

analysis of the final model, the Task-Tuned  

 

 

 

 

Hybrid Model was tested on based on the 

precision, recall and F1-score metrics. 

 

Evaluation of the Final Model 

Based on the comparative results, Model D was 

selected as the final architecture for further 

evaluation. The following sections present an in-

depth analysis of its performance using 

additional metrics and visualization techniques. 

 

Interface Development 

A user-friendly interface was developed with 

Streamlit to be used in a practical deployment. 

It allows users to upload pictures, get 

predictions and real-time Grad-CAM overlays, 

without its technical knowledge. With the 

combination of TensorFlow and OpenCV, the 

system facilitates effective and convenient 

application in the clinical practice especially in 

areas with limited resources. 

 

Summary of Model Performance 

Table-2 shows the values of training, validation, 

and test accuracy, and loss of the four 

developed models. It accentuates the 

development of the performance of the first 

hybrid model to the last optimized task specific 

model. 

 

Class-Wise Performance Analysis 

Although standard measures of model 

evaluation are accuracy and loss, which do not 

necessarily represent performance in multi-

class or unbalanced classification problems. To 

give a more detailed evaluation Task-Tuned 

Hybrid Model was also tested in terms of 

precision, recall, and F1-score. 
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The model was found to be accurate to the 

extent of 0.97 which means that 97 percent of 

the positive predictions were true. It had a recall 

of 0.96 indicating good identification of 96% of 

true positive, and F1-score of 0.98, which 

indicates the perfect mix of precision and recall 

as illustrated in Table-3.  

 

 

 

Interpretability through Grad-CAM 

Visualizations 

To understand the model predictions and what 

the model focused on during classification, 

Gradient-weighted Class Activation Mapping 

(Grad-CAM) was used. Grad-CAM produces 

heatmaps, which are used to show the most 

significant regions of an image that led to the 

model decision. Fig. 2 makes side-by-side 

comparisons of original test images and their 

Grad-CAM overlaid images, showing the areas 

where the model focused during prediction. 

Such visualizations are evidence of the model 

capability to localize clinically relevant features, 

which demonstrates the fact that its decisions 

are based on dermatological patterns. This 

interpretability does not only confirm the 

reliability of the model decision-making process 

but also enhances its possibility to be used in  

 

 

These uniform high scores indicate that model 

has strong reliability and balanced predictive 

potential that can be potentially useful in terms 

of real and interpretable classification of skin 

diseases across various categories. 

 

 

 

 

 

the diagnosis of skin diseases with the 

trustworthiness of clinical use. 

 

 DISCUSSION 
This paper has shown that the classification of 

multi-class skin disease can be significantly 

enhanced by an effective architectural polishing 

instead of merely adding complexity to the 

models. Having substituted heavy and less 

compatible backbone networks with lightweight, 

pretrained models, including EfficientNetB3 and 

MobileNetV2, and introducing several other 

improvements, including the use of more 

convolutional layers, dropout, batch 

normalization, and global average pooling, the 

proposed hybrid model found an effective 

balance between the accuracy, generalizability, 

and interpretability. 

 

Table-2. Comparative Performance Metrics of All Models 

Models 
Training 

Accuracy 
Training loss Validation Accuracy Validation loss Test accuracy 

Test 
Loss 

Model A 62.08% 1.034 40.69% 2.271 56% 1.293 

Model B 90% 0.2712 75% 0.9362 73% 0.79 

Model C 81.95% 0.0950 83.79% 0.464 83% 0.460 

Model D 96.81% 0.490 87.66% 0.455 86% 0.411 

Table-3 Class-Wise Distribution 

Class 
Class 

Names 
Precision Recall F1-Score 

0 Nevus 0.70 0.74 0.72 

1 Actinic Keratosis 0.82 0.88 0.85 

2 Basal Cell Carcinoma 0.82 0.69 0.75 

3 Dermatofibroma 0.85 0.89 0.87 

4 Melanoma 0.50 0.58 0.54 

5 Pigmented Benign Keratosis 0.58 0.45 0.51 

6 Squamous Cell Carcinoma 0.65 0.73 0.68 

7 Vascular Lesion 0.97 0.95 0.96 
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Fig.2 Comparison of original and Grad-CAM heatmap visualizations for the model’s predictions 

 

The test accuracy of 86 and high precision and 

recall rates show that the model has a high level 

of reliability in categorizing skin diseases with low 

chances of misclassifying. These results 

correspond to the recent literature to the point 

that too much complexity may result in overfitting 

and poor practical utility. 

 

Grad-CAM visualizations also confirmed the 

interpretability of the model clinically as they 

indicated that the model predictions were guided 

by medically sensitive parts of the skin images. 

This enhances the confidence in the model 

decision-making process and promotes its 

potential application to the use of the model as a 

decision-support tool in clinical and 

teledermatology practice. Nonetheless, there are 

a number of critical drawbacks that should be 

noted. The model demonstrated relatively low 

performance in detecting melanoma, which is 

one of the most difficult conditions of the skin to 

detect because of its visual similarity to benign 

lesions and inter-class variability. Also, the cases 

of failure showed that sometimes the model was 

not able to work with low-quality or darkened 

images, which should be improved, and the data 

should be further preprocessed through image 

enhancement. 

The other limitation is related to the composition 

of the dataset, as it was not as diverse in the skin 

tone and demographic composition. These 

biases may influence the generalization of 

models on other populations and geographical 

areas. Moreover, the model architecture is 

computationally less expensive than most deep 

networks, but a more thorough analysis of the 

computational demands and scalability on low-

resource hardware (e.g. mobile devices or rural 

clinic systems) is needed before scaling to large 

scale. Lastly, the paper fails to exhaust the 

practical implementation of this model in clinical 

practice. Practical implementation would involve 

clinical validation, user education, ethics, and 

EHR integrability. The consideration of these 

points in the workplace will be important in 

ensuring safe and effective implementation of the 

AI-based dermatological tool in the daily health 

establishment practice. 

 

To conclude, although the proposed model is 

performing promisingly and has interpretability, 

future studies must emphasize on the perfection 

of melanoma detection, improve the diversity of 

datasets, determine the scalability of the model, 

and create deployment options that are 

compliant with clinical workflow realities. 

 

 

Limitations  

Although these are promising results, there are a 

number of limitations that need to be mentioned. 

The model showed relatively worse results in 

recognition of melanoma, which is a category 

that is still especially tricky because of its 

unobtrusive and changeable appearance. Also, 
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the data used was filtered and low in diversity 

that can limit the applicability of the model into 

the clinical setting where the quality of images, 

light, and skin tones differ dramatically. Thus, the 

arguments related to the reduction of false 

positives and false negatives should be 

perceived with caution, because the 

performance may vary depending on the types of 

diseases and population groups. 

 

Recommendations 

The future work will be aimed at a number of 

directions. First, it will be possible to increase the 

size of the dataset to cover various populations, 

imaging devices, and clinical settings to 

decrease bias and increase the robustness of the 

models. Second, melanoma detection will be 

enhanced by targeting augmentation of data, 

ensemble learning, and attention-based 

mechanisms. Third, full real-world validation in 

partnership with dermatologists will be 

undertaken to determine the value of the system 

diagnostics and usefulness during the clinical 

processes. Lastly, consideration of 

computational efficiency and deployment 

suitability in healthcare organizations with limited 

resources will be given a high priority to make the 

model accessible and viable in the international 

application of teledermatology. 

 

CONCLUSION 
This paper presented an advanced deep 

learning architecture in the classification of 

multi-class skin diseases based on 

lightweight pretrained backbones, with a set 

of extra convolutional layers and 

regularization methods, including dropout, 

batch normalization, and global average 

pooling. The hybrid model was observed to 

produce significant results, and the training, 

validation, and test accuracy were 96.81, 

87.66 and 86, respectively. The evaluation 

metrics such as its precision (0.97), and 

recall (0.96) show that the model is 

consistent in thedifferentiating between the 

various dermatological classes. Moreover, 

Grad-CAM visualizations were also very 

easy to interpret, and confirmed the model 

focus to be clinically relevant, which 

increased confidence in the model 

prediction. 
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