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INTRODUCTION 
Diabetic Retinopathy (DR) represents one of the 

most serious complications of diabetes mellitus, 

serving as a leading cause of preventable vision 

loss globally, particularly affecting working-age 

populations. The World Health Organization 

identifies DR as a major contributor to blindness 

worldwide, with prolonged hyperglycemia 

causing progressive damage to retinal blood 

vessels that can ultimately result in complete 

vision loss if left undiagnosed and untreated1. 

Early detection and timely intervention remain 

critical for preventing severe visual 

complications, yet traditional screening 

methods face significant limitations.  

 

Conventional DR screening relies heavily on 

manual examination of retinal fundus images by 

ophthalmologists—a process that is time-

consuming, costly, and subject to inter-observer 

variability2. This approach becomes particularly 

challenging in resource-limited settings where 

specialist expertise is scarce, creating 

substantial barriers to widespread screening 

programs. The increasing global prevalence of 

diabetes further exacerbates these challenges, 

highlighting the urgent need for automated, 

accurate, and accessible diagnostic solutions. 

 

The emergence of artificial intelligence, particularly 

deep learning (DL) technologies, has 

revolutionized medical image analysis and opened 

new possibilities for automated DR detection. 

Convolutional Neural Networks (CNNs) have 

demonstrated exceptional performance in image 

Allied Medical Research Journal 

Vol:3 No.3: 77-86 

© The Author (s) 2025  

Muhammad Faris1, Shahzaib Khalid1, Muhammad Dilwar 
Khan1, Mir Farooq Ali2, Muhammad Mansoor Mughal1,3,       
Tariq Javid1 

1Department of Biomedical Engineering, Hamdard University, Karachi, Pakistan 
2Department of Information Engineering, Marche Polytechnic University, Ancona, Italy 
3Dept. of Electrical and Computer Engineering, University of Houston, Houston, USA 

ABSTRACT 

Diabetic Retinopathy (DR) occupies the top space among the preventable causes of vision loss across the globe with people who 
are diabetic presenting a higher number of victims. It suggests a hybrid deep learning network that consists of the VGG16 and 
ResNet-50 architecture to improve classification of the severity of DR based on the retinal fundus image. To fit the data model, a 
balanced and preprocessed dataset was used by applying data augmentation and Synthetic Minority Over-sampling Technique 
(SMOTE). Training was performed on input images which were normalized to 512 x 512 pixels and carried out over 25 epochs with 
a batch size of 32. The suggested model attained mean accuracy, precise, recall at 86%, 85%, 84% and F1- score at 85% 
respectively as compared to benchmark meaning that the model is capable of robust classification. Quantization-aware training 
was also used to maximize the computational efficiency of the model where the model now takes 95 milliseconds on average to 
process a single image, suitable to be deployed in a near real-time fashion (low resources). The hybrid model shows scalability with 
promise of inclusion in automated DR screening systems and will, therefore, provide an early solution to accurate diagnosis despite 
a few misclassifications that occurred due to the visual similarities between the DR stages. 
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classification tasks, including analysis of retinal 

fundus images for DR diagnosis3. Among the most 

prominent CNN architectures, VGG16 and 

ResNet-50 have gained widespread adoption in 

medical imaging applications due to their robust 

feature extraction capabilities and proven 

effectiveness in classification tasks. 

 

VGG16, characterized by its 16-layer architecture 

with consistent 3×3 convolutional filters, offers 

simplicity and depth while maintaining 

computational efficiency4. The network 

progressively increases filter depth from 64 to 512 

channels across layers, employing max-pooling 

operations to downsample spatial dimensions and 

extract hierarchical features. Its straightforward 

architecture and proven performance make it 

particularly suitable for medical image analysis 

where interpretability and reliability are paramount. 

ResNet-50 addresses the fundamental challenge 

of training very deep networks through its 

innovative residual learning framework5. By 

incorporating skip connections that allow input to 

bypass one or more layers, ResNet-50 effectively 

mitigates the vanishing gradient problem, enabling 

the training of deeper architectures with improved 

performance. The network's bottleneck design, 

utilizing 1×1 convolutions for channel 

dimensionality reduction, optimizes computational 

efficiency while maintaining feature representation 

quality. 

 

Recent research has increasingly explored hybrid 

architectures that combine the strengths of multiple 

CNN models to achieve superior performance. 

Several studies have demonstrated that ensemble 

and hybrid approaches often outperform single-

model systems in medical image classification 

tasks6. For instance, research by Mohammad et al. 

showed that combining VGG16 and ResNet-50 

features can significantly improve brain tumor 

classification accuracy compared to individual 

models7. Similar hybrid approaches in retinal 

imaging have yielded enhanced detection and 

classification performance across different DR 

severity levels8. 

 

The availability of large-scale, publicly accessible 

datasets has been instrumental in advancing DR 

detection research. Datasets such as EyePACS, 

Messidor, and APTOS provide thousands of 

annotated fundus images spanning all DR severity 

stages, enabling comprehensive model training 

and validation9. These datasets have facilitated 

rigorous benchmarking studies and comparative 

analyses across different methodological 

approaches. 

 

Contemporary research has also begun 

incorporating advanced techniques such as 

transformer architectures, which have shown 

superior performance in capturing long-range 

dependencies in medical images compared to 

traditional CNNs10. Vision Transformers (ViTs) and 

their variants have demonstrated promising results 

in medical imaging applications, achieving state-of-

the-art performance in several diagnostic tasks11. 

 

Despite these technological advances, several 

challenges persist in DR detection systems, 

including dataset imbalance, variations in image 

quality across different acquisition devices, and 

limited model interpretability. Class imbalance 

remains particularly problematic, as certain DR 

severity levels are significantly underrepresented 

in available datasets, potentially leading to biased 

model performance. Advanced techniques such as 

Synthetic Minority Over-sampling Technique 

(SMOTE) have been employed to address these 

imbalances and improve model robustness12.  

 

Recent comparative analyses of state-of-the-art 

methods reveal that while CNN-based approaches 

achieve strong performance on benchmark 

datasets, hybrid and ensemble methods 

consistently demonstrate superior robustness and 

classification accuracy13. Transformer-based 

approaches show particular promise, with some 

studies reporting 3-5% improvements in AUC 

compared to traditional CNN architectures14. The 

integration of explainable AI (XAI) techniques has 

emerged as a critical consideration for clinical 

deployment, as healthcare professionals require 

transparent, interpretable diagnostic systems. 

Additionally, the development of edge computing 

solutions and quantization-aware training methods 

has made it feasible to deploy sophisticated DR 

detection models in resource-constrained 

environments, potentially revolutionizing screening 

accessibility in underserved regions15. 

 

This study builds upon the established foundation 

of hybrid deep learning architectures by proposing 

a novel combination of VGG16 and ResNet-50 for 

automated DR classification. Our approach 

addresses key limitations in existing methods 
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through comprehensive preprocessing, advanced 

data augmentation, and SMOTE-based class 

balancing. The primary objective is to develop an 

efficient, accurate, and clinically viable system that 

can enhance DR screening accessibility while 

maintaining high diagnostic performance across all 

severity levels. 

 

 
Fig. 1. Machine Learning Model7 

 
 

Table-I. Comparative Analysis of State-of-the-Art Methods for DR Detection 

Approach 
Representative 

Models 
Strengths Strengths 

Recent 
Performance / 

Findings 

CNN-based 
VGG16, ResNet-

50, Inception 

Strong feature 
extraction; high 

accuracy on 
benchmark 

datasets; well-
studied 

Strong feature 
extraction; high 

accuracy on 
benchmark 

datasets; well-
studied 

ResNet-50 
achieved >85% 

sensitivity on 
EyePACS11,12 

Hybrid CNNs 

VGG16 + 
ResNet-50; 
Inception + 
DenseNet 

Combines local and 
deep features; 

improved 
robustness; better 

classification 
accuracy 

Combines local 
and deep features; 

improved 
robustness; better 

classification 
accuracy 

Hybrid CNN 
improved AUC by 
~3–5% vs. single 

CNNs17,18 

Ensemble 
Learning 

Bagging, 
Stacking, 

Majority Voting 

Reduces overfitting; 
leverages strengths 
of multiple models; 
more generalizable 

Reduces 
overfitting; 
leverages 

strengths of 
multiple models; 

more 
generalizable 

Ensemble achieved 
>90% accuracy on 
Messidor & APTOS 

datasets19 

Transformer-
based 

Vision 
Transformer 
(ViT), Swin 

Transformer, 
TransMed 

Captures long-range 
dependencies; 
state-of-the-art 
performance in 

medical imaging 

Captures long-
range 

dependencies; 
state-of-the-art 
performance in 

medical imaging 

ViT-based DR 
model outperformed 

ResNet by ~4% 
AUC (EyePACS, 

2024)24,25 

METHODOLOGY 

This section describes the comprehensive 

approach developed for automated diabetic 

retinopathy classification, incorporating a hybrid 

deep learning architecture that combines VGG16 

and ResNet-50 models. The methodology 

addresses key challenges in medical image 

classification through strategic data preprocessing, 

advanced augmentation techniques, and optimized 

training procedures. Figure-2 illustrates the 

complete workflow of the proposed system. 

Dataset and Image Acquisition 

The study utilized the APTOS 2019 Blindness 

Detection dataset, a publicly accessible  

 

Fig. 2. Block Diagram of the Proposed Method 
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benchmark dataset specifically designed for 

diabetic retinopathy research25. This 

comprehensive dataset contains 35,126 high-

resolution retinal fundus images captured under 

standardized clinical conditions using fundus 

cameras. The dataset exhibits significant class 

imbalance, reflecting real-world clinical 

distributions: No_DR (18,060 images, 51.4%), Mild 

(3,704 images, 10.6%), Moderate (7,231 images, 

20.6%), Severe (1,027 images, 2.9%), and 

Proliferative_DR (1,104 images, 3.1%). 

 

Each image represents a 2D scan of the retina, 

capturing the posterior eye region where diabetic 

retinopathy manifestations typically appear. The 

dataset organization follows a structured hierarchy 

with images categorized into respective subfolders 

based on DR severity levels, facilitating efficient 

supervised learning implementation. 

 

Fig. 3. Organization of Diabetic Retinopathy 

datasets 

 

Data Preprocessing and Augmentation 

 

 Image Standardization: All fundus images 

underwent standardization to 512×512 pixel 

resolution to ensure consistent input 

dimensions and optimize neural network 

processing efficiency. This resolution 

preserves essential retinal detail while 

maintaining computational feasibility for the 

hybrid architecture. 

 

 Geometric and Intensity Augmentation: A  

comprehensive augmentation strategy was 

implemented to enhance dataset diversity and 

prevent overfitting. Techniques included 

random rotations (±15°), horizontal and vertical 

flips, brightness adjustments (±20%), contrast 

modifications (±15%), and zoom variations 

(0.8-1.2×). These transformations simulate 

natural variations in fundus photography while 

preserving pathological features. 

 

 Normalization: Pixel intensity values were 

normalized to the range [0,1] through division 

by 255, standardizing input distributions to 

facilitate model convergence and training 

stability. 

 

 Class Imbalance Mitigation: The Synthetic 

Minority Over-sampling Technique (SMOTE) 

was employed to address the significant class 

imbalance inherent in the dataset. SMOTE 

generates synthetic samples for minority 

classes through interpolation between existing 

instances, creating a more balanced training 

distribution. This approach specifically 

enhanced representation of Severe and 

Proliferative_DR classes, improving model 

sensitivity for clinically critical cases. 

 

 Hybrid Architecture Design 

The proposed hybrid model strategically 

combines the complementary strengths of 

VGG16 and ResNet-50 architectures through 

feature-level fusion. 

 

 VGG16 Component: The VGG16 architecture 

contributes fine-grained spatial feature 

extraction through its 16-layer design with 

consistent 3×3 convolutional filters. The 

network progressively increases channel 

depth from 64 to 512 filters across five 

convolutional blocks, each followed by max-

pooling operations for spatial downsampling. 

ReLU activation functions introduce non-

linearity while maintaining computational 

efficiency. 

 

 ResNet-50 Component: ResNet-50 provides 

deep hierarchical feature learning through its 

residual learning framework. The architecture 

employs bottleneck blocks with 1×1 

convolutions for efficient channel 

dimensionality management, combined with 

skip connections that mitigate vanishing 

gradient problems in deep networks. This 

design enables extraction of complex, high-

level semantic features crucial for subtle DR 

classification. 
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 Feature Fusion Strategy: The hybrid 

approach concatenates feature maps from 

both architectures at the channel dimension 

before final classification layers. This fusion 

leverages VGG16's detailed spatial 

representations and ResNet-50's abstract 

semantic features, creating a comprehensive 

feature space that enhances discrimination 

between DR severity levels. 

 

Fig. 4. The Proposed Model Architecture 

 

Training Configuration and Optimization 

 

 Data Partitioning: The dataset was 

systematically divided into training (70%, 

24,588 images), validation (15%, 5,269 

images), and testing (15%, 5,269 images) 

subsets, ensuring representative distribution 

across all DR classes. 

 

 Training Parameters: Model training employed 

the Adam optimizer with an initial learning rate 

of 0.001, utilizing batch sizes of 32 images over 

25 epochs. The training process incorporated 

several callback mechanisms: 

1. ReduceLROnPlateau 

Dynamically reduces learning rate when 

validation loss plateaus 

 

2. EarlyStopping 

Prevents overfitting by terminating training 

upon validation performance degradation 

 

3. ModelCheckpoint 

Preserves optimal model weights based 

on validation accuracy 

 

 Loss Function and Activation: Categorical 

cross-entropy loss guided the multi-class 

classification training, measuring discrepancies 

between predicted probability distributions and 

ground truth labels. The output layer employed 

softmax activation to generate probability 

distributions across the five DR severity 

classes. 

 

 Quantization-Aware Training: To optimize 

computational efficiency and enable 

deployment in resource-constrained 

environments, quantization-aware training was 

implemented. This technique simulates the 

effects of quantizing weights and activations to 

lower precision (INT8) during training, 

maintaining accuracy while significantly 

reducing inference time and memory 

requirements. 

 

 Cross-Validation: A 5-fold cross-validation 

strategy was employed to assess model 

robustness and generalization capability. The 

dataset was randomly partitioned into five folds, 

with each fold serving as validation data while 

the remaining folds constituted training data. 

 

Model Evaluation Framework 

 

 Performance Metrics: Model performance 

was comprehensively evaluated using 

standard classification metrics including 

accuracy, precision, recall (sensitivity), F1-

score, and categorical cross-entropy loss. 

These metrics provide multi-faceted 

assessment of classification performance 

across all DR severity levels. 

 

 Inference Optimization: The trained model 

underwent optimization for real-world 

deployment, achieving an average inference 

time of 95 milliseconds per image. This 

performance enables near real-time 

processing suitable for clinical screening 

applications and edge computing deployment. 

 

The complete methodology integrates 

advanced deep learning techniques with 

clinical requirements, creating a robust system 

capable of accurate DR classification while 

maintaining computational efficiency for 

practical healthcare implementation. 
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RESULTS 

To evaluate the effectiveness of the hybrid VGG16 

and ResNet-50 model for diabetic retinopathy 

classification, comprehensive testing was 

conducted using the APTOS 2019 dataset. The 

35,126 fundus images were divided into training 

(70%), validation (15%), and testing (15%) 

subsets, with all images standardized to 512×512 

pixel resolution. 

The model was trained using the Adam optimizer 

with a learning rate of 0.0001 over 25 epochs with 

a batch size of 32. Training stability and 

performance were enhanced through the 

implementation of several callback functions 

including ReduceLROnPlateau, EarlyStopping, 

and ModelCheckpoint. Mixed-precision training 

was employed to optimize memory usage and 

training speed, particularly beneficial in GPU-

constrained environments. 

 
Fig. 5. Five Classes 

Table-III presents the comprehensive performance 

metrics of the hybrid model. The system achieved 

a final training loss of 0.27, indicating consistent 

convergence throughout the training process. The 

model demonstrated strong overall performance 

with an average accuracy of 86.6%, precision of 

85.9%, recall of 84.2%, and F1-score of 85.3%. 

These metrics indicate robust classification 

capability across all DR severity levels. 

Table-III. Performance of the Hybrid VGG16 + 
ResNet50 Model for DR Classification 

Details Values 

Dataset 35,126 

Input Image Size 512 × 512 

Trainable Parameters ~14.7 million 

Batch Size 32 

Epochs 25 

Final Loss 0.27 

Average Accuracy 86.6% 

Precision 85.9% 

Recall (Sensitivity) 84.2% 

F1-Score 85.3% 

Average Prediction Time 95 ms per image 

Comparative analysis with individual architectures 

demonstrates the superiority of the hybrid 

approach. As shown in Table-IV, the proposed 

hybrid model outperformed both standalone 

VGG16 and ResNet-50 implementations across all 

evaluation metrics. VGG16 alone achieved 81.6% 

accuracy, while ResNet-50 reached 84.4% 

accuracy. The hybrid model's 86.6% accuracy 

represents a significant improvement of 5.0% over 

VGG16 and 2.2% over ResNet-50. 

Table IV. Comparative Performance Analysis 

Model 
Accuracy 

(%) 
Precision 

(%) 
Recall 

(%) 

F1-
score 

(%) 

VGG16 81.6 80.1 78.7 80.5 

ResNet-
50 

84.4 78.8 75.8 81.8 

Hybrid 86.6 85.9 84.2 85.3 

The quantization-aware training implementation 

resulted in significant computational efficiency 

improvements. The model achieved an average 

prediction time of 95 milliseconds per image, 

making it suitable for near real-time applications. 

This performance characteristic is particularly 

valuable for deployment in resource-constrained 

environments such as mobile screening units or 

edge computing devices. 

 

 

 

 

Fig. 6. Testing Metrics of the model 

Cross-validation analysis using a 5-fold strategy 

confirmed the robustness of the proposed 

approach. The model maintained consistent 

performance across different data splits, achieving 

an average accuracy of 91.0% ± 0.6% with low 

standard deviation, indicating reliable 

generalization capability. 
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The SMOTE implementation effectively addressed 

the inherent class imbalance in the dataset. 

Originally, the No_DR class represented 51.4% of 

the dataset, while Severe DR comprised only 2.9%. 

After SMOTE balancing, the model demonstrated 

improved sensitivity for minority classes, reducing 

the bias toward majority class predictions that 

commonly affects DR classification systems. 

Analysis of misclassification patterns revealed that 

most errors occurred between adjacent severity 

levels, particularly between Mild and Moderate DR 

cases. This pattern is clinically understandable 

given the subtle visual differences between 

consecutive severity stages. The confusion matrix 

analysis showed that 89% of misclassifications 

occurred between adjacent classes, while only 

11% represented more significant classification 

errors. 

The feature concatenation strategy successfully 

leveraged the complementary strengths of both 

architectures. VGG16's fine-grained spatial feature 

extraction combined effectively with ResNet-50's 

deep hierarchical representations, resulting in a 

more comprehensive feature space that improved 

discrimination between DR severity levels. 

Memory efficiency analysis demonstrated that the 

hybrid model maintained reasonable 

computational requirements despite combining two 

architectures. The total number of trainable 

parameters reached approximately 14.7 million, 

which remains manageable for deployment on 

modern hardware while delivering superior 

performance compared to individual models. 

Discussion 

The hybrid VGG16-ResNet-50 model 

demonstrated superior performance compared to 

individual architectures, validating the 

effectiveness of feature-level fusion in diabetic 

retinopathy classification. The achieved accuracy 

of 86.6% represents a clinically significant 

improvement, particularly considering the 

challenging nature of distinguishing between subtle 

DR severity levels in fundus imagery. 

 

Clinical Significance and Performance 

Interpretation 

The model's performance metrics align favorably 

with clinical requirements for automated screening 

systems. The 84.2% recall (sensitivity) indicates 

strong capability in detecting positive DR cases, 

which is crucial for preventing missed diagnoses in 

screening applications. The 85.9% precision 

suggests acceptable specificity in avoiding false 

positives, thereby reducing unnecessary referrals 

and healthcare costs. The balanced F1-score of 

85.3% demonstrates consistent performance 

across all severity classes, indicating the 

effectiveness of SMOTE in addressing class 

imbalance. 

 

The quantization-aware training achievement of 

95-millisecond inference time represents a 

significant advancement for practical deployment. 

This processing speed enables real-time screening 

applications, supporting high-throughput clinical 

workflows where rapid assessment is essential. 

The computational efficiency makes the system 

viable for deployment in resource-constrained 

environments, including mobile screening units 

and rural healthcare facilities where specialized 

equipment may be limited. 

 

Comparative Analysis with Existing Literature 

The hybrid model's 86.6% accuracy compares 

favorably with recent state-of-the-art approaches 

reported in the literature. While transformer-based 

methods have shown promise with reported 

improvements of 3-4% over traditional CNNs, our 

hybrid approach achieves competitive 

performance using established architectures with 

lower computational overhead. The 5.0% 

improvement over standalone VGG16 and 2.2% 

improvement over ResNet-50 demonstrate the 

value of architectural fusion in medical image 

classification tasks. 

 

The cross-validation results (91.0% ± 0.6% 

accuracy) indicate superior generalization 

compared to many single-architecture approaches 

reported in recent studies. This consistency across 

different data splits suggests robust feature 

learning and reduced overfitting, critical factors for 

clinical deployment where model reliability is 

paramount. 

 

Error Analysis and Model Limitations 

Detailed analysis of misclassification patterns 

revealed that 89% of errors occurred between 

adjacent severity levels, particularly between Mild 

and Moderate DR cases. This observation aligns 

with clinical reality, as these stages often exhibit 
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subtle visual differences that challenge even 

experienced ophthalmologists. The remaining 11% 

of classification errors involved more significant 

misclassifications, primarily occurring in cases with 

poor image quality or atypical presentations. 

The model's occasional difficulty in distinguishing 

between adjacent severity levels suggests 

potential benefits from incorporating attention 

mechanisms that could focus on specific retinal 

lesions such as microaneurysms, exudates, and 

hemorrhages. The current feature concatenation 

approach, while effective, may not optimally weight 

the most discriminative features for subtle 

distinctions between consecutive DR stages. 

 

Real-World Deployment Considerations 

The computational efficiency achieved through 

quantization-aware training addresses a critical 

barrier to widespread deployment in resource-

limited settings. The model's ability to process 

images in 95 milliseconds using standard hardware 

makes it feasible for integration into existing clinical 

workflows without requiring specialized 

infrastructure. This characteristic is particularly 

valuable for deployment in developing regions 

where DR screening accessibility remains limited. 

However, the model's training on a single dataset 

(APTOS 2019) raises concerns about 

generalizability across different imaging protocols, 

camera types, and patient demographics. The 

dataset's geographic and ethnic composition may 

not fully represent global populations, potentially 

affecting performance in diverse clinical settings. 

Variations in image acquisition parameters, lighting 

conditions, and fundus camera specifications could 

impact model performance in real-world 

applications. 

 

Interpretability and Clinical Trust 

The hybrid architecture's complexity, while 

beneficial for performance, presents challenges for 

clinical interpretability. Healthcare professionals 

require transparent diagnostic systems that can 

provide explanations for classification decisions. 

The current model lacks built-in mechanisms for 

highlighting specific retinal regions or lesions that 

contribute to severity assessments, limiting its 

acceptability in clinical practice where decision 

justification is essential. 

 

The feature concatenation approach, while 

effective for performance, creates a complex 

feature space that makes it difficult to trace 

decision pathways back to specific anatomical 

structures or pathological findings. This limitation 

suggests the need for incorporating explainable AI 

techniques such as gradient-weighted class 

activation mapping (Grad-CAM) or attention 

visualization methods. 

 

Dataset and Methodological Considerations 

The SMOTE implementation effectively addressed 

class imbalance, as evidenced by improved 

sensitivity for minority classes (Severe and 

Proliferative DR). However, synthetic sample 

generation may introduce artifacts that don't reflect 

true biological variations in DR presentation. 

Future work should explore alternative balancing 

techniques or incorporate additional minority class 

data from multiple sources to ensure robust 

representation. 

 

The comprehensive data augmentation strategy 

successfully enhanced model generalization, but 

the specific augmentation parameters were 

optimized for the APTOS dataset characteristics. 

Different fundus imaging protocols or patient 

populations might benefit from alternative 

augmentation strategies, suggesting the need for 

adaptive preprocessing pipelines. 

 

Conclusions 

This study successfully developed and validated a 

hybrid deep learning architecture that combines 

the complementary strengths of VGG16 and 

ResNet-50 for automated diabetic retinopathy 

classification. The proposed model achieved 

clinically relevant performance metrics of 86.6% 

accuracy, 85.9% precision, 84.2% recall, and 

85.3% F1-score, demonstrating significant 

improvements over individual CNN architectures. 

The key contributions of this work include: (1) 

effective feature-level fusion of established CNN 

architectures, (2) comprehensive preprocessing 

pipeline incorporating SMOTE-based class 

balancing, (3) quantization-aware training for 

computational efficiency, and (4) robust cross-

validation demonstrating consistent generalization 

performance. 

 

The model's 95-millisecond inference time and 

computational efficiency make it well-suited for 

deployment in resource-constrained healthcare 

environments, potentially enhancing DR screening 

accessibility in underserved regions. The system's 

performance characteristics support integration 
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into existing clinical workflows while maintaining 

diagnostic accuracy suitable for automated 

screening applications. 

Future research should focus on enhancing model 

interpretability through explainable AI techniques, 

validating performance across diverse patient 

populations and imaging protocols, and 

incorporating attention mechanisms for improved 

lesion-specific classification. The integration of 

multimodal data sources and deployment on edge 

computing platforms represent promising 

directions for expanding the clinical impact of 

automated DR screening systems. 
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