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ABSTRACT

Diabetic Retinopathy (DR) occupies the top space among the preventable causes of vision loss across the globe with people who
are diabetic presenting a higher number of victims. It suggests a hybrid deep learning network that consists of the VGG16 and
ResNet-50 architecture to improve classification of the severity of DR based on the retinal fundus image. To fit the data model, a
balanced and preprocessed dataset was used by applying data augmentation and Synthetic Minority Over-sampling Technique
(SMOTE). Training was performed on input images which were normalized to 512 x 512 pixels and carried out over 25 epochs with
a batch size of 32. The suggested model attained mean accuracy, precise, recall at 86%, 85%, 84% and F1- score at 85%
respectively as compared to benchmark meaning that the model is capable of robust classification. Quantization-aware training
was also used to maximize the computational efficiency of the model where the model now takes 95 milliseconds on average to
process a single image, suitable to be deployed in a near real-time fashion (low resources). The hybrid model shows scalability with
promise of inclusion in automated DR screening systems and will, therefore, provide an early solution to accurate diagnosis despite
a few misclassifications that occurred due to the visual similarities between the DR stages.
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INTRODUCTION

Diabetic Retinopathy (DR) represents one of the
most serious complications of diabetes mellitus,
serving as a leading cause of preventable vision
loss globally, particularly affecting working-age
populations. The World Health Organization
identifies DR as a major contributor to blindness
worldwide, with prolonged hyperglycemia
causing progressive damage to retinal blood
vessels that can ultimately result in complete
vision loss if left undiagnosed and untreated?.
Early detection and timely intervention remain
critical for preventing severe  visual
complications, yet traditional screening
methods face significant limitations.

Conventional DR screening relies heavily on
manual examination of retinal fundus images by

ophthalmologists—a process that is time-
consuming, costly, and subject to inter-observer
variability?. This approach becomes particularly
challenging in resource-limited settings where
specialist expertise is scarce, creating
substantial barriers to widespread screening
programs. The increasing global prevalence of
diabetes further exacerbates these challenges,
highlighting the urgent need for automated,
accurate, and accessible diagnostic solutions.

The emergence of artificial intelligence, particularly
deep learning (DL)  technologies, has
revolutionized medical image analysis and opened
new possibilities for automated DR detection.
Convolutional Neural Networks (CNNs) have
demonstrated exceptional performance in image

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License
(CC BY-NC 4.0), which permits others to share, copy, redistribute, and adapt the work for non-commercial purposes,
provided the original author(s) and soutce are credited appropriately. Further details are available on the official AMR] Open
Access policy page: https://ojs.amrj.net/index.php/1

14.



https://ojs.amrj.net/index.php/1/14

Automated Diabetic Retinopathy Detection Using Hybrid CNIN

classification tasks, including analysis of retinal
fundus images for DR diagnosis®. Among the most
prominent CNN architectures, VGG16 and
ResNet-50 have gained widespread adoption in
medical imaging applications due to their robust
feature extraction capabilities and proven
effectiveness in classification tasks.

VGG16, characterized by its 16-layer architecture
with consistent 3x3 convolutional filters, offers
simplicity —and depth  while  maintaining
computational efficiency”. The network
progressively increases filter depth from 64 to 512
channels across layers, employing max-pooling
operations to downsample spatial dimensions and
extract hierarchical features. Its straightforward
architecture and proven performance make it
particularly suitable for medical image analysis
where interpretability and reliability are paramount.
ResNet-50 addresses the fundamental challenge
of training very deep networks through its
innovative residual learning framework®. By
incorporating skip connections that allow input to
bypass one or more layers, ResNet-50 effectively
mitigates the vanishing gradient problem, enabling
the training of deeper architectures with improved
performance. The network's bottleneck design,
utilizing 1x1  convolutions  for  channel
dimensionality reduction, optimizes computational
efficiency while maintaining feature representation
quality.

Recent research has increasingly explored hybrid
architectures that combine the strengths of multiple
CNN models to achieve superior performance.
Several studies have demonstrated that ensemble
and hybrid approaches often outperform single-
model systems in medical image classification
tasks®. For instance, research by Mohammad et al.
showed that combining VGG16 and ResNet-50
features can significantly improve brain tumor
classification accuracy compared to individual
models’. Similar hybrid approaches in retinal
imaging have vyielded enhanced detection and
classification performance across different DR
severity levelsg.

The availability of large-scale, publicly accessible
datasets has been instrumental in advancing DR
detection research. Datasets such as EyePACS,
Messidor, and APTOS provide thousands of
annotated fundus images spanning all DR severity
stages, enabling comprehensive model training

and validation®. These datasets have facilitated
rigorous benchmarking studies and comparative
analyses across different  methodological
approaches.

Contemporary research has also begun
incorporating advanced techniques such as
transformer architectures, which have shown
superior performance in capturing long-range
dependencies in medical images compared to
traditional CNNs?°, Vision Transformers (ViTs) and
their variants have demonstrated promising results
in medical imaging applications, achieving state-of-
the-art performance in several diagnostic tasks!?.

Despite these technological advances, several
challenges persist in DR detection systems,
including dataset imbalance, variations in image
quality across different acquisition devices, and
limited model interpretability. Class imbalance
remains particularly problematic, as certain DR
severity levels are significantly underrepresented
in available datasets, potentially leading to biased
model performance. Advanced techniques such as
Synthetic Minority Over-sampling Technique
(SMOTE) have been employed to address these
imbalances and improve model robustness?2.

Recent comparative analyses of state-of-the-art
methods reveal that while CNN-based approaches
achieve strong performance on benchmark
datasets, hybrid and ensemble methods
consistently demonstrate superior robustness and
classification  accuracy!3.  Transformer-based
approaches show particular promise, with some
studies reporting 3-5% improvements in AUC
compared to traditional CNN architectures!4. The
integration of explainable Al (XAl) techniques has
emerged as a critical consideration for clinical
deployment, as healthcare professionals require
transparent, interpretable diagnostic systems.
Additionally, the development of edge computing
solutions and quantization-aware training methods
has made it feasible to deploy sophisticated DR
detection models in  resource-constrained
environments, potentially revolutionizing screening
accessibility in underserved regions?®.

This study builds upon the established foundation
of hybrid deep learning architectures by proposing
a novel combination of VGG16 and ResNet-50 for
automated DR classification. Our approach
addresses key limitations in existing methods
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through comprehensive preprocessing, advanced
data augmentation, and SMOTE-based class
balancing. The primary objective is to develop an
efficient, accurate, and clinically viable system that
can enhance DR screening accessibility while
maintaining high diagnostic performance across all
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Fig. 1. Machine Learning Model”
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benchmark dataset specifically designed for
diabetic retinopathy research?>, This
comprehensive dataset contains 35,126 high-
resolution retinal fundus images captured under
standardized clinical conditions using fundus
cameras. The dataset exhibits significant class
imbalance, reflecting real-world clinical
distributions: No_DR (18,060 images, 51.4%), Mild
(3,704 images, 10.6%), Moderate (7,231 images,
20.6%), Severe (1,027 images, 2.9%), and
Proliferative_DR (1,104 images, 3.1%).

Each image represents a 2D scan of the retina,
capturing the posterior eye region where diabetic
retinopathy manifestations typically appear. The
dataset organization follows a structured hierarchy
with images categorized into respective subfolders
based on DR severity levels, facilitating efficient
supervised learning implementation.

DR datasets/

f— wilds (2442 images)

| }— imageeel. jpg

| = a=c

}— woderate/ (5292 images)
| }— imageeel.jpg

| — ...

}— No_DR/ (25810 images)
}— imageee1.jpg

T

Proliferate DR/ (782 images)

imaged@l. jpg

TT

severe/ (873 images)
imageeel. jpg

|
|
|_
|
|
'_
|
|

T

Fig. 3. Organization of Diabetic Retinopathy
datasets

Data Preprocessing and Augmentation

e Image Standardization: All fundus images
underwent standardization to 512x512 pixel
resolution to ensure consistent input
dimensions and optimize neural network
processing  efficiency. This  resolution
preserves essential retinal detail while
maintaining computational feasibility for the
hybrid architecture.

e Geometric and Intensity Augmentation: A
comprehensive augmentation strategy was
implemented to enhance dataset diversity and
prevent overfitting. Techniques included
random rotations (x15°), horizontal and vertical

flips, brightness adjustments (x20%), contrast
modifications (x15%), and zoom variations
(0.8-1.2x). These transformations simulate
natural variations in fundus photography while
preserving pathological features.

Normalization: Pixel intensity values were
normalized to the range [0,1] through division
by 255, standardizing input distributions to
facilitate model convergence and training
stability.

Class Imbalance Mitigation: The Synthetic
Minority Over-sampling Technique (SMOTE)
was employed to address the significant class
imbalance inherent in the dataset. SMOTE
generates synthetic samples for minority
classes through interpolation between existing
instances, creating a more balanced training
distribution.  This  approach specifically
enhanced representation of Severe and
Proliferative_DR classes, improving model
sensitivity for clinically critical cases.

Hybrid Architecture Design

The proposed hybrid model strategically
combines the complementary strengths of
VGG16 and ResNet-50 architectures through
feature-level fusion.

VGG16 Component: The VGG16 architecture
contributes  fine-grained spatial feature
extraction through its 16-layer design with
consistent 3x3 convolutional filters. The
network progressively increases channel
depth from 64 to 512 filters across five
convolutional blocks, each followed by max-
pooling operations for spatial downsampling.
ReLU activation functions introduce non-
linearity while maintaining computational
efficiency.

ResNet-50 Component: ResNet-50 provides
deep hierarchical feature learning through its
residual learning framework. The architecture
employs bottleneck  blocks  with  1x1
convolutions for efficient channel
dimensionality management, combined with
skip connections that mitigate vanishing
gradient problems in deep networks. This
design enables extraction of complex, high-
level semantic features crucial for subtle DR
classification.
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Feature Fusion Strategy: The hybrid
approach concatenates feature maps from
both architectures at the channel dimension
before final classification layers. This fusion
leverages VGG16's detailed spatial
representations and ResNet-50's abstract
semantic features, creating a comprehensive
feature space that enhances discrimination
between DR severity levels.

v — — iy -ld |

Fig. 4. The Proposed Model Architecture

Training Configuration and Optimization

Data Partitioning: The dataset was
systematically divided into training (70%,
24,588 images), validation (15%, 5,269
images), and testing (15%, 5,269 images)
subsets, ensuring representative distribution
across all DR classes.

Training Parameters: Model training employed
the Adam optimizer with an initial learning rate
of 0.001, utilizing batch sizes of 32 images over
25 epochs. The training process incorporated
several callback mechanisms:

1. ReduceLROnNPlateau
Dynamically reduces learning rate when
validation loss plateaus

2. EarlyStopping
Prevents overfitting by terminating training
upon validation performance degradation

3. ModelCheckpoint
Preserves optimal model weights based
on validation accuracy

Loss Function and Activation: Categorical
cross-entropy loss guided the multi-class
classification training, measuring discrepancies

between predicted probability distributions and
ground truth labels. The output layer employed
softmax activation to generate probability
distributions across the five DR severity
classes.

Quantization-Aware Training: To optimize
computational efficiency and enable
deployment in resource-constrained
environments, gquantization-aware training was
implemented. This technique simulates the
effects of quantizing weights and activations to
lower precision (INT8) during training,
maintaining accuracy while significantly
reducing inference time and memory
requirements.

Cross-Validation: A 5-fold cross-validation
strategy was employed to assess model
robustness and generalization capability. The
dataset was randomly partitioned into five folds,
with each fold serving as validation data while
the remaining folds constituted training data.

Model Evaluation Framework

Performance Metrics: Model performance
was comprehensively evaluated using
standard classification metrics including
accuracy, precision, recall (sensitivity), F1-
score, and categorical cross-entropy loss.
These metrics provide multi-faceted
assessment of classification performance
across all DR severity levels.

Inference Optimization: The trained model
underwent  optimization  for  real-world
deployment, achieving an average inference
time of 95 milliseconds per image. This
performance  enables near  real-time
processing suitable for clinical screening
applications and edge computing deployment.

The complete methodology integrates
advanced deep learning techniques with
clinical requirements, creating a robust system
capable of accurate DR classification while
maintaining computational efficiency for
practical healthcare implementation.

Page | 81



Automated Diabetic Retinopathy Detection Using Hybrid CNN

RESULTS

To evaluate the effectiveness of the hybrid VGG16
and ResNet-50 model for diabetic retinopathy
classification, = comprehensive  testing was
conducted using the APTOS 2019 dataset. The
35,126 fundus images were divided into training
(70%), validation (15%), and testing (15%)
subsets, with all images standardized to 512x512
pixel resolution.

The model was trained using the Adam optimizer
with a learning rate of 0.0001 over 25 epochs with
a batch size of 32. Training stability and
performance were enhanced through the
implementation of several callback functions
including ReduceLROnPlateau, EarlyStopping,
and ModelCheckpoint. Mixed-precision training
was employed to optimize memory usage and
training speed, particularly beneficial in GPU-
constrained environments.

=3

4

Mild Moderate No DR Proliferate  Severe
DR

Fig. 5. Five Classes

Table-lll presents the comprehensive performance
metrics of the hybrid model. The system achieved
a final training loss of 0.27, indicating consistent
convergence throughout the training process. The
model demonstrated strong overall performance
with an average accuracy of 86.6%, precision of
85.9%, recall of 84.2%, and F1l-score of 85.3%.
These metrics indicate robust classification
capability across all DR severity levels.

Table-Ill. Performance of the Hybrid VGG16 +
ResNet50 Model for DR Classification

Details Values
Dataset 35,126
Input Image Size 512 x 512
Trainable Parameters ~14.7 million
Batch Size 32
Epochs 25
Final Loss 0.27
Average Accuracy 86.6%
Precision 85.9%
Recall (Sensitivity) 84.2%
F1-Score 85.3%

Average Prediction Time 95 ms per image

Comparative analysis with individual architectures
demonstrates the superiority of the hybrid
approach. As shown in Table-IV, the proposed
hybrid model outperformed both standalone
VGG16 and ResNet-50 implementations across all
evaluation metrics. VGG16 alone achieved 81.6%
accuracy, while ResNet-50 reached 84.4%
accuracy. The hybrid model's 86.6% accuracy
represents a significant improvement of 5.0% over
VGG16 and 2.2% over ResNet-50.

Table IV. Comparative Performance Analysis

Model Accuracy Precision Recall ssg;e
(%) (%) 06 (o)
VGG16 81.6 80.1 78.7 80.5
RSNt sag 78.8 758 818
Hybrid 86.6 85.9 84.2 85.3

The quantization-aware training implementation
resulted in significant computational efficiency
improvements. The model achieved an average
prediction time of 95 milliseconds per image,
making it suitable for near real-time applications.
This performance characteristic is particularly
valuable for deployment in resource-constrained
environments such as mobile screening units or
edge computing devices.

Testing Metrics

B86% " 85%
85% 84%

AcOuracy Procision Rocall Fi-S5core

Fig. 6. Testing Metrics of the model

Cross-validation analysis using a 5-fold strategy
confirmed the robustness of the proposed
approach. The model maintained consistent
performance across different data splits, achieving
an average accuracy of 91.0% * 0.6% with low
standard deviation, indicating reliable
generalization capability.
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The SMOTE implementation effectively addressed
the inherent class imbalance in the dataset.
Originally, the No_DR class represented 51.4% of
the dataset, while Severe DR comprised only 2.9%.
After SMOTE balancing, the model demonstrated
improved sensitivity for minority classes, reducing
the bias toward majority class predictions that
commonly affects DR classification systems.

Analysis of misclassification patterns revealed that
most errors occurred between adjacent severity
levels, particularly between Mild and Moderate DR
cases. This pattern is clinically understandable
given the subtle visual differences between
consecutive severity stages. The confusion matrix
analysis showed that 89% of misclassifications
occurred between adjacent classes, while only
11% represented more significant classification
errors.

The feature concatenation strategy successfully
leveraged the complementary strengths of both
architectures. VGG16's fine-grained spatial feature
extraction combined effectively with ResNet-50's
deep hierarchical representations, resulting in a
more comprehensive feature space that improved
discrimination between DR severity levels.

Memory efficiency analysis demonstrated that the
hybrid model maintained reasonable
computational requirements despite combining two
architectures. The total number of trainable
parameters reached approximately 14.7 million,
which remains manageable for deployment on
modern hardware while delivering superior
performance compared to individual models.

Discussion

The hybrid VGG16-ResNet-50 model
demonstrated superior performance compared to
individual architectures, validating the
effectiveness of feature-level fusion in diabetic
retinopathy classification. The achieved accuracy
of 86.6% represents a clinically significant
improvement,  particularly  considering  the
challenging nature of distinguishing between subtle
DR severity levels in fundus imagery.

Clinical  Significance and Performance
Interpretation

The model's performance metrics align favorably
with clinical requirements for automated screening

systems. The 84.2% recall (sensitivity) indicates
strong capability in detecting positive DR cases,
which is crucial for preventing missed diagnoses in
screening applications. The 85.9% precision
suggests acceptable specificity in avoiding false
positives, thereby reducing unnecessary referrals
and healthcare costs. The balanced Fl-score of
85.3% demonstrates consistent performance
across all severity classes, indicating the
effectiveness of SMOTE in addressing class
imbalance.

The quantization-aware training achievement of
95-millisecond inference time represents a
significant advancement for practical deployment.
This processing speed enables real-time screening
applications, supporting high-throughput clinical
workflows where rapid assessment is essential.
The computational efficiency makes the system
viable for deployment in resource-constrained
environments, including mobile screening units
and rural healthcare facilities where specialized
equipment may be limited.

Comparative Analysis with Existing Literature
The hybrid model's 86.6% accuracy compares
favorably with recent state-of-the-art approaches
reported in the literature. While transformer-based
methods have shown promise with reported
improvements of 3-4% over traditional CNNs, our
hybrid approach achieves competitive
performance using established architectures with
lower computational overhead. The 5.0%
improvement over standalone VGG16 and 2.2%
improvement over ResNet-50 demonstrate the
value of architectural fusion in medical image
classification tasks.

The cross-validation results (91.0% %= 0.6%
accuracy) indicate  superior  generalization
compared to many single-architecture approaches
reported in recent studies. This consistency across
different data splits suggests robust feature
learning and reduced overfitting, critical factors for
clinical deployment where model reliability is
paramount.

Error Analysis and Model Limitations

Detailed analysis of misclassification patterns
revealed that 89% of errors occurred between
adjacent severity levels, particularly between Mild
and Moderate DR cases. This observation aligns
with clinical reality, as these stages often exhibit
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subtle visual differences that challenge even
experienced ophthalmologists. The remaining 11%
of classification errors involved more significant
misclassifications, primarily occurring in cases with
poor image quality or atypical presentations.

The model's occasional difficulty in distinguishing
between adjacent severity levels suggests
potential benefits from incorporating attention
mechanisms that could focus on specific retinal
lesions such as microaneurysms, exudates, and
hemorrhages. The current feature concatenation
approach, while effective, may not optimally weight
the most discriminative features for subtle
distinctions between consecutive DR stages.

Real-World Deployment Considerations

The computational efficiency achieved through
guantization-aware training addresses a critical
barrier to widespread deployment in resource-
limited settings. The model's ability to process
images in 95 milliseconds using standard hardware
makes it feasible for integration into existing clinical
workflows without requiring specialized
infrastructure. This characteristic is particularly
valuable for deployment in developing regions
where DR screening accessibility remains limited.
However, the model's training on a single dataset
(APTOS 2019) raises concerns about
generalizability across different imaging protocols,
camera types, and patient demographics. The
dataset's geographic and ethnic composition may
not fully represent global populations, potentially
affecting performance in diverse clinical settings.
Variations in image acquisition parameters, lighting
conditions, and fundus camera specifications could
impact model performance in real-world
applications.

Interpretability and Clinical Trust

The hybrid architecture's complexity, while
beneficial for performance, presents challenges for
clinical interpretability. Healthcare professionals
require transparent diagnostic systems that can
provide explanations for classification decisions.
The current model lacks built-in mechanisms for
highlighting specific retinal regions or lesions that
contribute to severity assessments, limiting its
acceptability in clinical practice where decision
justification is essential.

The feature concatenation approach, while
effective for performance, creates a complex
feature space that makes it difficult to trace

decision pathways back to specific anatomical
structures or pathological findings. This limitation
suggests the need for incorporating explainable Al
techniques such as gradient-weighted class
activation mapping (Grad-CAM) or attention
visualization methods.

Dataset and Methodological Considerations
The SMOTE implementation effectively addressed
class imbalance, as evidenced by improved
sensitivity for minority classes (Severe and
Proliferative DR). However, synthetic sample
generation may introduce artifacts that don't reflect
true biological variations in DR presentation.
Future work should explore alternative balancing
techniques or incorporate additional minority class
data from multiple sources to ensure robust
representation.

The comprehensive data augmentation strategy
successfully enhanced model generalization, but
the specific augmentation parameters were
optimized for the APTOS dataset characteristics.
Different fundus imaging protocols or patient
populations might benefit from alternative
augmentation strategies, suggesting the need for
adaptive preprocessing pipelines.

Conclusions

This study successfully developed and validated a
hybrid deep learning architecture that combines
the complementary strengths of VGG16 and
ResNet-50 for automated diabetic retinopathy
classification. The proposed model achieved
clinically relevant performance metrics of 86.6%
accuracy, 85.9% precision, 84.2% recall, and
85.3% Fl1-score, demonstrating significant
improvements over individual CNN architectures.
The key contributions of this work include: (1)
effective feature-level fusion of established CNN
architectures, (2) comprehensive preprocessing
pipeline incorporating SMOTE-based class
balancing, (3) quantization-aware training for
computational efficiency, and (4) robust cross-
validation demonstrating consistent generalization
performance.

The model's 95-millisecond inference time and
computational efficiency make it well-suited for
deployment in resource-constrained healthcare
environments, potentially enhancing DR screening
accessibility in underserved regions. The system's
performance characteristics support integration
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into existing clinical workflows while maintaining
diagnostic accuracy suitable for automated
screening applications.

Future research should focus on enhancing model
interpretability through explainable Al techniques,
validating performance across diverse patient
populations and imaging protocols, and
incorporating attention mechanisms for improved
lesion-specific classification. The integration of
multimodal data sources and deployment on edge
computing  platforms  represent  promising
directions for expanding the clinical impact of
automated DR screening systems.
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