

Effectiveness of Neuromuscular Physical Therapy with Cognitive-Motor Dual Task Training in Reducing Fall Risk in Older Adults with Mild Cognitive Impairment

Mudassar Rooh-ul-Muazzam¹, Munaish Kumar², Jai Vansi³, Jeetandar⁴, Ravi Kumar Katta⁵, Humaira Azhar⁶

¹Athlean Physical Therapy, Islamabad, Pakistan

²Islamabad Institute of Health Sciences, Islamabad, Pakistan

³Al-Zabria Hospital, Dubai, United Arab Emirates

⁴Liaquat University of Medical and Health Sciences, Jamshoro, Sindh

⁵Telangana State Vaidya Vidhana Parishad Area Hospital, Ghanpur Station, Telangana, India

⁶Business Professional People University, Shepherd's Bush, West London, England

ABSTRACT

Background: A study investigating the effectiveness of neuromuscular physical therapy combined with cognitive-motor dual-task training could provide valuable insights into optimizing fall prevention strategies. Such research would help establish evidence-based protocols that maximize functional outcomes and improve the quality of life for older adults at risk of falls.

Methods: A quasi-experimental study with pre- and post-intervention assessments was conducted to evaluate the effectiveness of combining neuromuscular physical therapy with cognitive-motor dual-task training in reducing the risk of falls among older adults with mild cognitive impairment (MCI).

Results: The effects of interventions were determined by comparing the average values of outcome measures taken at baseline and after 12 weeks of intervention and the findings provide significant improvement where the values of Tinetti Performance-Oriented Mobility Assessment at baseline were 22.63 ± 3.27 that was significantly ($p < 0.001$) improved to 27.21 ± 3.11 after twelve weeks of intervention. In addition to that value of cognitive functioning as observed at baseline was 21.36 ± 2.12 was also significantly ($p < 0.001$) improved to 25.66 ± 3.21 after intervention.

Conclusion: The 12-week intervention program combining neuromuscular physical therapy and cognitive-motor dual-task training significantly improved functional mobility, cognitive function, and dynamic balance in older adults with mild cognitive impairment. The results indicate that the intervention was effective in enhancing balance and reducing fall risk, as evidenced by the improvements in Tinetti Performance-Oriented Mobility Assessment (POMA), Montreal Cognitive Assessment (MoCA), and Timed Up and Go (TUG) test scores.

Keywords: Cognition, Elderly, Mobility, Postural Balance.

Received: August 15, 2024; **Revised:** November 5, 2024; **Accepted:** December 14, 2024

Corresponding Email: jitendar_valecha@yahoo.com

DOI: <https://doi.org/10.59564/amrj/03.01/016>

INTRODUCTION

The annual prevalence of falls among older adults is a significant public health concern, particularly for those with cognitive impairment¹. Studies show that nearly 60% of older adults with cognitive impairment experience falls each year, a rate twice as high as that of cognitively healthy, community-dwelling older adults². This

heightened risk is further exacerbated by the fact that older adults with cognitive impairment are five times more likely to be institutionalized following a fall compared to their non-falling peers³. The consequences of falls in this population are also more severe, with a 2- to 3-fold increased risk of hip fractures, slower recovery rates, and higher

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits others to share, copy, redistribute, and adapt the work for non-commercial purposes, provided the original author(s) and source are credited appropriately. Further details are available on the official AMRJ Open Access policy page: <https://ojs.amrj.net/index.php/1/14>.

mortality⁴. Research indicates that older adults with dementia experience up to eight times greater incidence of falls compared to their cognitively healthy counterparts⁵. Cognitive impairment affects critical functions such as judgment, attention, and spatial awareness, making it harder for individuals to navigate their environment safely⁵. Additionally, physical and functional impairments, such as reduced balance, muscle weakness, and slower reaction times, are common in this population, further increasing fall risk⁶. Behavioral disturbances, such as impulsivity or agitation, and psychosocial factors like anxiety or depression, also contribute to this heightened vulnerability⁷. These factors, combined with age-related changes in vision, hearing, and mobility, create a complex interplay that predisposes older adults with cognitive impairment to falls and related injuries⁷.

Despite the clear need for targeted interventions, fall prevention strategies for older adults with cognitive impairment remain underdeveloped. Most fall prevention trials have excluded individuals with cognitive impairment, resulting in a lack of evidence-based interventions tailored to this population⁸. As the global prevalence of dementia is expected to double by 2050, affecting over 152 million older adults, there is an urgent need for research and interventions that specifically address the unique challenges faced by older adults with cognitive impairment to reduce falls and their devastating consequences⁹. Neuromuscular physical therapy plays a crucial role in reducing the risk of falls among older adults, particularly those with cognitive impairment or neurological conditions such as stroke. This form of therapy focuses on improving motor function, balance, coordination, and strength through targeted exercises and repetitive motor training¹⁰. By leveraging principles of motor learning, such as adaptation and skill acquisition, neuromuscular physical therapy helps older adults regain functional movement patterns or develop compensatory strategies to perform daily activities safely. For older adults, this approach can improve gait stability, reduce postural sway, and enhance overall mobility, thereby lowering the likelihood of falls¹¹.

Dual-task training is a neurorehabilitation approach that involves performing two tasks

simultaneously, such as a motor task combined with a cognitive task (motor-cognitive) or two motor tasks (motor-motor)¹². This method challenges the brain to distribute attention between tasks, improving cognitive-motor integration and enhancing the ability to manage multiple demands at once. For older adults, particularly those with mild cognitive impairment (MCI), dual-task training can be highly effective in reducing the risk of falls¹³⁻¹⁵. The integration of dual-task training into fall prevention programs is particularly beneficial for older adults with MCI, as they often experience deficits in attention, executive function, and motor control¹⁶. By simultaneously engaging cognitive and motor systems, dual-task training promotes neuroplasticity and strengthens the neural pathways involved in multitasking. This can lead to improved coordination, faster reaction times, and better postural control, all of which are essential for reducing fall risk¹⁷.

Despite the benefits of dual-task training, there is a need for further research to explore its effectiveness when combined with other interventions, such as neuromuscular physical therapy. Neuromuscular physical therapy focuses on improving strength, balance, and motor control, while dual-task training enhances cognitive-motor integration¹⁸⁻¹⁹. Combining these approaches could provide a synergistic effect, addressing both the physical and cognitive risk factors for falls in older adults with MCI. A study investigating the effectiveness of neuromuscular physical therapy combined with cognitive-motor dual-task training could provide valuable insights into optimizing fall prevention strategies. Such research would help establish evidence-based protocols that maximize functional outcomes and improve the quality of life for older adults at risk of falls.

METHODOLOGY

Study Design

A pilot randomized controlled trial was conducted to evaluate the effectiveness of combining neuromuscular physical therapy with cognitive-motor dual-task training in reducing the risk of falls among older adults with MCI.

Study Setting

The study was conducted in a community-based rehabilitation center equipped of Jamshoro, Sindh with resources for neuromuscular rehabilitation and dual-task training, including balance mats, treadmills, cognitive task materials, and safety equipment to prevent falls during training.

Sample Size

A sample size was calculated based on the findings of previous study titled as "The Effect of Dynamic Neuromuscular Stabilization Exercises on Balance and Fear of Falling in Female Elderly"20. The pre-post mean values of static balance from the experimental were taken that were 10.62 ± 1.27 (pre) and 12.91 ± 1.44 (post). By keeping the confidence interval of 95% and a bond of error of 5% a sample size of n=32 was calculated based on the following formula:

$$n = (Z\alpha/2 + Z\beta)^2 * 2 * \sigma^2 / d^2$$

Inclusion Criteria

- Adults aged 65 years and older.
- Diagnosed with MCI based on a Montreal Cognitive Assessment (MoCA) score of 18–25.
- Ability to walk independently or with minimal assistance (e.g., cane or walker).
- Willingness to participate in a 12-week intervention program.
- No severe visual or auditory impairments hindering participation.

Exclusion Criteria

- Severe cognitive impairment or dementia (MoCA score <18).
- History of severe neurological or musculoskeletal conditions (e.g., Parkinson's disease, severe arthritis).
- Recent history of falls with severe injuries (e.g., fractures) within the past 6 months.
- Inability to commit to the 6-day-per-week training schedule.

Intervention Protocol

The intervention lasted for 12 weeks, with participants engaging in training sessions 6 days per week. The program alternated between neuromuscular physical therapy and cognitive-motor dual-task training, with each type of training conducted on 3 separate days per week.

Neuromuscular Physical Therapy

Frequency: 3 days per week.

Intensity:

- *Strength training:* Moderate intensity (50–70% of 1RM for lower limb muscles).
- *Balance training:* Moderate, challenging but safe (able to maintain balance with minimal external support).
- *Gait training:* Moderate intensity (55–70% of maximum heart rate) with variable speeds and obstacles.

Time:

45–60 minutes including:

- Warm-up: 5–10 minutes (light aerobic activity and dynamic stretching).
- Main session: 30–40 minutes.
- Cool-down: 5–10 minutes (light stretching and breathing exercises).

Type:

Strength training:

- *Leg presses:* 3 sets of 10–12 repetitions to improve lower limb strength.
- *Step-ups:* 3 sets of 10 repetitions per leg.
- *Resistance band exercises:* 3 sets of 12 repetitions (leg curls, hip abduction/adduction).

Balance training:

- *Single-leg stands:* 3 sets of 30 seconds per leg to enhance stability.
- *Tandem walking:* 3 sets of 10 steps forward and backward.
- *Balance board exercises:* 3 sets of 60 seconds.

Gait training:

- *Treadmill walking:* 3 sets of 5 minutes at varying speeds (slow, moderate, and fast) with 1-minute rests to improve walking patterns.
- *Obstacle navigation:* 3 sets of 5 minutes, focusing on step-over and side-stepping movements.

Progression:

Gradually increase resistance and duration every 2 weeks based on patient tolerance and clinical assessment.

Cognitive-Motor Dual-Task Training

Frequency: 3 days per week.

Exercises:

- Walking while counting backward or naming objects to challenge attention and gait simultaneously.
- Stepping over obstacles while solving simple arithmetic problems to enhance coordination and cognitive processing.
- Carrying a tray with objects while responding to verbal cues to simulate real-world multitasking scenarios.

Duration: 45–60 minutes per session, with progressive increases in task complexity.

Outcome Measures

- **Tinetti Performance-Oriented Mobility Assessment (POMA)**

Test Performance: The participant was observed while sitting, standing, turning, and walking a short distance. Balance and gait were assessed through posture, step length, trunk stability, and turning ability²¹.

Scoring: The maximum score was 28 (16 for balance, 12 for gait).

- 25–28: Low fall risk.
- 19–24: Moderate fall risk.
- <19: High fall risk.

Clinical Relevance: This test predicted fall risk, evaluated functional mobility, and helped design fall prevention strategies²¹.

- **Montreal Cognitive Assessment (MoCA)**

Test Performance: The participant completed tasks assessing memory, visuospatial ability, attention, language, abstraction, and orientation. The test took about 10 minutes to administer²².

Scoring: The total score was 30 points.

- ≥26: Normal cognitive function.
- 18–25: Mild cognitive impairment (MCI).
- 10–17: Moderate cognitive impairment
- <10 Severe Cognitive Impairment

Clinical Relevance: This test detected early cognitive impairment and was particularly useful in conditions like Alzheimer's, Parkinson's disease, and vascular dementia²².

- **Timed Up and Go (TUG) Test**

Test Performance: The participant started seated in a chair, stood up, walked 3 meters, turned around, walked back, and sat down while being timed²³.

Scoring:

- <10 seconds: Normal mobility.
- 10–20 seconds: Good mobility, independent in daily activities.
- >20 seconds: Impaired mobility, increased fall risk.

Clinical Relevance: This test assessed dynamic balance, functional mobility, and fall risk, commonly used for older adults or those with neurological or musculoskeletal conditions²³.

Data Analysis

Descriptive statistics, including mean and standard deviation, were calculated for demographic and baseline characteristics. Paired t-tests was applied to determine pre-post difference at a confidence interval CI of 95% a p<0.05 was considered statistically significant.

Ethical Considerations

Informed consent was obtained from all participants after providing detailed information about the study's purpose, procedures, risks, and benefits. Participant data were anonymized and stored securely, with access limited to the research team. Safety measures, including supervision by trained therapists and the use of assistive devices, were implemented to prevent falls or injuries during training sessions.

RESULTS

Demographic descriptions of the participants had revealed that the mean age of the participants was 68.53 ± 2.36 years with n=18 (56.25%) male and 14 (43.75%) females. In addition to that cognitive variables were also assessed and the findings revealed that at baseline the value of cognitive functions as measured using a MoCA score was 21.36 ± 2.12 (Table-1).

Table-1 Demographic Characteristics of Participants measured at baseline

Variables	Mean value at baseline	Standard Deviation
Age	68.53	2.36
Cognition (MoCA)	21.36	2.12

Gender wise distribution

Gender	Number	Percentage
Male	18	56.25%

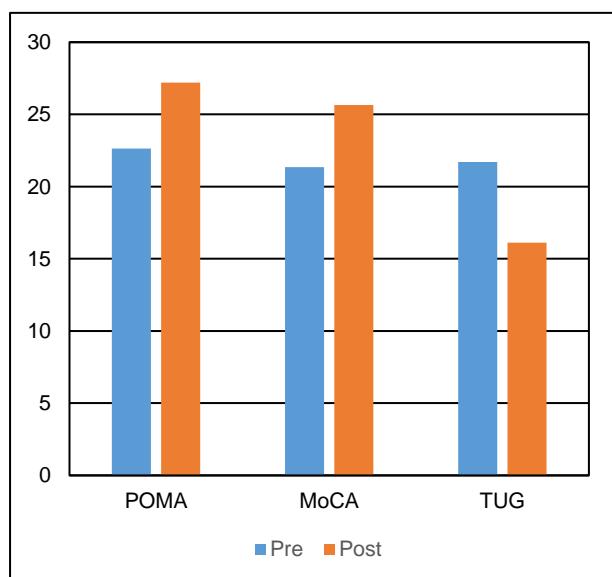
Female	14	43.75%
--------	----	--------

The effects of interventions were determined by comparing the average values of outcome measures taken at baseline and after 12 weeks of intervention and the findings provide significant improvement where the values of Tinetti Performance-Oriented Mobility Assessment at baseline were 22.63 ± 3.27 that was significantly

($p < 0.001$) improved to 27.21 ± 3.11 after twelve weeks of intervention. In addition to that value of cognitive functioning as observed at baseline was 21.36 ± 2.12 was also significantly ($p < 0.001$) improved to 25.66 ± 3.21 after intervention (Table-2).

Table#2 Paired T-Test to Determine Pre-Post Effect of Intervention on Functional Mobility and Cognitive Function

Variables	Mean \pm SD (Baseline)	Post \pm SD (Post)	t-test	t-crit	p-value
POMA	22.63 ± 3.27	27.21 ± 3.11	1.96	0.34	<0.001
MoCA	21.36 ± 2.12	25.66 ± 3.21	1.63		<0.001


Dynamic Balance of the participants were also estimated and the findings revealed that dynamic balance was significantly improved $p < 0.001$ after

12 weeks of intervention where the values at baseline were 21.7 ± 2.44 seconds that was reduced to 16.12 ± 2.56 seconds (Table-3).

Table-3 Paired T-Test to Determine Pre-Post Effect of Intervention on Dynamic Balance

Variables	Mean \pm SD (Baseline)	Post \pm SD (Post)	t-test	t-crit	p-value
TUG	21.7 ± 2.44	16.12 ± 2.56	1.66	0.34	<0.001

The graphical representation illustrating the effects of 12 weeks of intervention on cognitive function, functional mobility and dynamic balance shown in Figure-1:

Fig-1. Effects of 12 weeks of intervention on cognitive function, functional mobility and dynamic balance

DISCUSSION

The findings of this study demonstrated significant improvements in cognitive function, functional mobility, and dynamic balance following a 12-week intervention combining neuromuscular physical therapy and cognitive-motor dual-task training. At baseline, participants exhibited mild cognitive impairment, with a mean MoCA score of 21.36 ± 2.12 , indicating the need for targeted cognitive stimulation alongside physical rehabilitation. After the intervention, this score significantly improved to 25.66 ± 3.21 ($p < 0.001$), reflecting enhanced cognitive processing and attention. Similarly, functional mobility, as measured by the POMA, showed a marked improvement from 22.63 ± 3.27 to 27.21 ± 3.11 ($p < 0.001$), reducing participants' fall risk and supporting the efficacy of the neuromuscular training protocol. Additionally, dynamic balance, assessed using the TUG test, revealed a significant reduction in time from 21.7 ± 2.44

seconds at baseline to 16.12 ± 2.56 seconds post-intervention ($p < 0.001$), indicating greater mobility and stability. These results suggest that integrating physical and cognitive exercises into rehabilitation programs for older adults can yield meaningful functional gains, thereby enhancing overall quality of life and reducing the likelihood of falls and cognitive decline. In another study, the effect of motor-cognitive dual-task training (mCdtt) and motor-motor dual-task training (mMdtt) on balance, fear of falling, walking functionality, and muscle strength in older adults was explored. Interestingly, the findings revealed that although the 8-week mCdtt and mMdtt programs did not significantly differ in their impact on these clinical outcomes, both training approaches effectively improved balance ability²⁴. This aligns with the results of the present study, where a 12-week intervention combining neuromuscular physical therapy and cognitive-motor dual-task training led to significant improvements in functional mobility, cognitive performance, and dynamic balance²⁴. Notably, while the other study observed no significant difference between the two forms of dual-task training, our findings suggest that integrating physical and cognitive exercises more comprehensively over a longer duration can yield greater functional gains²⁴. This contrast highlights the potential advantage of a longer intervention period and suggests that sustained, progressive cognitive-motor engagement may be key to maximizing clinical outcomes in older adults. In a similar study, the effect of neuromuscular rehabilitation, specifically proprioceptive neuromuscular facilitation (PNF), was investigated for improving balance and muscle health among older adults with a high risk of falls²⁵. Over six months, the intervention group receiving PNF training alongside standard care demonstrated significant improvements in balance function, as reflected in higher Berg Balance Scale scores, faster TUG test times, and increased 30-Second Chair Stand Test counts ($p < 0.05$)²⁵. Additionally, bone density showed a notable increase in the intervention group compared to the control group, though lower limb muscle mass differences were not substantial. These findings align with the results of the present study, where a 12-week neuromuscular physical therapy and cognitive-motor dual-task training program led to significant enhancements in functional mobility, dynamic balance, and

cognitive performance²⁵. Interestingly, while both studies confirmed improvements in balance and fall prevention, our study further highlighted the cognitive benefits of integrating motor and cognitive tasks, suggesting that a combined approach may offer broader functional gains. In a systematic review conducted to determine the effects of neuromuscular training on physical performance in older adults, significant improvements were observed across several key domains²⁶. The review reported notable gains in postural balance, flexibility, cardiorespiratory fitness, and both upper and lower limb strength. Additionally, neuromuscular training was found to enhance functional autonomy, contributing to a reduced risk of falls and greater independence in daily activities²⁶.

These empirical findings underscore the effectiveness of neuromuscular interventions in promoting overall physical well-being among older adults, although the review emphasized the need for more high-quality studies for more generalizability in the findings²⁶. A notable strength of this study is its well-structured, community-based rehabilitation setting, which provided a safe and controlled environment equipped with specialized resources for neuromuscular and dual-task training. The 12-week intervention, with a rigorous 6-day-per-week schedule, allowed for consistent engagement and progressive improvements, as evidenced by significant gains in functional mobility (POMA), cognitive function (MoCA), and dynamic balance (TUG). The inclusion of standardized outcome measures adds to the study's reliability and clinical relevance. However, a potential weakness is the relatively small sample size ($n=32$), which may limit the generalizability of the findings. Additionally, the exclusion of participants with severe cognitive or musculoskeletal impairments, while necessary for safety, may overlook the intervention's efficacy in more vulnerable populations. Future studies with larger, more diverse cohorts and a longer follow-up period could provide a clearer picture of the long-term benefits and sustainability of these interventions.

CONCLUSION

The 12-week intervention program combining neuromuscular physical therapy and cognitive-motor dual-task training significantly improved

functional mobility, cognitive function, and dynamic balance in older adults with mild cognitive impairment. The results indicate that the intervention was effective in enhancing balance and reducing fall risk, as evidenced by the improvements in POMA, MoCA, and TUG test scores. The substantial improvements in cognitive function and balance suggest that the dual-task training approach, combining physical and cognitive challenges, can be an effective strategy for improving overall quality of life and reducing fall risk in older adults. However, further research with larger sample sizes and long-term follow-up is recommended to confirm these findings and explore the sustainability of the benefits.

Acknowledgments

None.

Author Contributions

Mudassar Rooh ul Muazzam conceptualized and designed the research. **Munaish Kumar** and **Jai Vansi** were involved in data collection and participant recruitment. **Jeetendar** and **Ravi Kumar Katta** contributed to data analysis and interpretation. **Humaira Azhar** assisted in manuscript drafting and critical revisions. All authors reviewed and approved the final version of the manuscript.

Ethical Approval

This study received approval from the Institutional Ethical Review Committee (No. LUMHS/IEC/2025-163) Liaquat University of Medical and Health Sciences, Jamshoro, Sindh.

Grant Support and Funding Disclosure

None.

Conflict of Interests

None.

REFERENCES

- Xu Q, Ou X, Li J. The risk of falls among the aging population: A systematic review and meta-analysis. *Front Public Health*. 2022 Oct 17;10:902599. [DOI: <https://doi.org/10.3389/fpubh.2022.902599>](https://doi.org/10.3389/fpubh.2022.902599)
- Dent E, Dalla Via J, Bozanich T, Hoogendijk EO, Gebre AK, Smith C, Zhu K, Prince RL, Lewis JR, Sim M. Frailty increases the long-term risk for fall and fracture-related hospitalizations and all-cause mortality in community-dwelling older women. *J Bone Miner Res*. 2024 Mar;39(3):222-30. [DOI: <https://doi.org/10.1093/jbmr/zjad019>](https://doi.org/10.1093/jbmr/zjad019)
- Zwart LA, Germans T, Vogels R, Simsek S, Hemels ME, Jansen RW. Frail patients who fall and their risk on major bleeding and intracranial haemorrhage. Outcomes from the Fall and Syncope Registry. *BMC Geriatr*. 2023 Jul 10;23(1):422. [DOI: <https://doi.org/10.1186/s12877-023-04120-9>](https://doi.org/10.1186/s12877-023-04120-9)
- Pereira CB, Kanashiro AM. Falls in older adults: a practical approach. *Arq Neuropsiquiatr*. 2022 May;80(5 Suppl 1):313-23. DOI: <https://doi.org/10.1590/0004-282X-ANP-2022-S107>.
- Nagarkar A, Kulkarni S. Association between daily activities and fall in older adults: an analysis of longitudinal ageing study in India (2017–18). *BMC Geriatr*. 2022 Mar 14;22(1):203. [DOI: <https://doi.org/10.1186/s12877-022-02879-x>](https://doi.org/10.1186/s12877-022-02879-x)
- Kadir MI, Hardiyanti N, Adliah F. A pilot study of the effect of Otago exercise program on fall risk and quality of life of older women. *Phys Ther J Indones*. 2021 May 12;2(1):1-4. [DOI: <https://doi.org/10.51559/ptji.v2i1.16>](https://doi.org/10.51559/ptji.v2i1.16)
- Nugraha S, Prasetyo S, Susilowati IH, Rahardjo TW. Urban-rural dimension of fall and its associated risk factors amongst community-dwelling older adults in Indonesia. *J Aging Res*. 2021;2021:8638170. [DOI: <https://doi.org/10.1155/2021/8638170>](https://doi.org/10.1155/2021/8638170)
- Concha-Cisternas Y, Castro-Piñero J, Leiva-Ordóñez AM, Valdés-Badilla P, Celis-Morales C, Guzmán-Muñoz E. Effects of neuromuscular training on physical performance in older people: A systematic review. *Life*. 2023 Mar 24;13(4):869. [DOI: <https://doi.org/10.3390/life13040869>](https://doi.org/10.3390/life13040869)
- James E, Nichols S, Goodall S, Hicks KM, O'Doherty AF. The influence of resistance training on neuromuscular function in middle-aged and older adults: A systematic review and meta-analysis of randomized controlled trials. *Exp Gerontol*. 2021 Jul 1;149:111320. [DOI: <https://doi.org/10.1016/j.exger.2021.111320>](https://doi.org/10.1016/j.exger.2021.111320)
- Hu Y, Kattan C, Kontos D, Zhu W, Hernandez ME. Benefits of tai ji quan practice on neuromuscular functions in older adults: A Systematic Review and meta-analysis. *Complement Ther Clin Pract*. 2021 Feb 1;42:101295. [DOI: <https://doi.org/10.1016/j.ctcp.2020.101295>](https://doi.org/10.1016/j.ctcp.2020.101295)
- Giovannini S, Brau F, Galluzzo V, Santagada DA, Loret C, Biscotti L, Laudisio A, Zuccalà G, Bernabei R. Falls among older adults: Screening, identification, rehabilitation, and management. *Appl Sci*. 2022 Aug 8;12(15):7934. [DOI: <https://doi.org/10.3390/app12157934>](https://doi.org/10.3390/app12157934)
- Nieto-Guisado A, Solana-Tramunt M, Cabrejas C, Morales J. The Effects of an 8-Week Cognitive–Motor Training Program on Proprioception and Postural Control Under Single and Dual Task in Older Adults: A Randomized Clinical Trial. *Healthcare*. 2024 Nov 17;12(22):2297. [DOI: <https://doi.org/10.3390/healthcare12222297>](https://doi.org/10.3390/healthcare12222297)
- Kargaran A, Abedinpour A, Saadatmehr Z, Yaali R, Amani-Shalamzari S, Gahreman D. Effects of dual-task training with blood flow restriction on cognitive functions, muscle quality, and circulatory biomarkers in elderly women. *Physiol Behav*. 2021 Oct 1;239:113500. [DOI: <https://doi.org/10.1016/j.physbeh.2021.113500>](https://doi.org/10.1016/j.physbeh.2021.113500)
- Liu CJ, Chang WP, Shin YC, Hu YL, Morgan-Daniel J. Is functional training functional? A systematic review of its effects in community-dwelling older adults. *Eur Rev Aging Phys Act*. 2024 Dec 21;21(1):32. [DOI: <https://doi.org/10.1186/s11556-024-00366-3>](https://doi.org/10.1186/s11556-024-00366-3)
- Gavelin HM, Dong C, Minkov R, Bahar-Fuchs A, Ellis KA, Lautenschlager NT, Mellow ML, Wade AT, Smith AE, Finke C, Krohn S. Combined physical and cognitive training for older adults with and without cognitive impairment: A systematic review and network meta-analysis of randomized controlled trials. *Ageing Res Rev*. 2021 Mar 1;66:101232. [DOI: <https://doi.org/10.1016/j.arr.2020.101232>](https://doi.org/10.1016/j.arr.2020.101232)
- Gallardo-Gomez D, del Pozo-Cruz J, Noetel M, Alvarez-Barbosa F, Alfonso-Rosa RM, del Pozo Cruz B. Optimal dose and type of exercise to improve cognitive function in older adults: A systematic review and Bayesian model-based network meta-analysis of RCTs. *Ageing Res Rev*. 2022 Apr 1;76:101591. [DOI: <https://doi.org/10.1016/j.arr.2022.101591>](https://doi.org/10.1016/j.arr.2022.101591)
- Montero-Odasso M, Van Der Velde N, Martin FC, Petrovic M, Tan MP, Ryg J, Aguilar-Navarro S, Alexander NB, Becker C, Blain H, Bourke R. World guidelines for

falls prevention and management for older adults: A global initiative. *Age Ageing*. 2022 Sep;51(9):afac205.
DOI: <https://doi.org/10.1093/ageing/afac205>

18. Monti E, Tagliaferri S, Zampieri S, Sarto F, Sirago G, Franchi MV, Ticinesi A, Longobucco Y, Adorni E, Lauretani F, Von Haehling S. Effects of a 2-year exercise training on neuromuscular system health in older individuals with low muscle function. *J Cachexia Sarcopenia Muscle*. 2023 Apr;14(2):794-804.
DOI: <https://doi.org/10.1002/jcsm.13173>

19. Mohseni G, Mohammad Ali Nasab Firouzjah E. The Effect of Dynamic Neuromuscular Stabilization Exercises on Balance and Fear of Falling in Female Elderly. *Elderly Health J*. 2023 Jun 10;9(1):16-22.
DOI: <https://doi.org/10.18502/ehj.v9i1.13105>

20. Omaña H, Bezaire K, Brady K, Davies J, Louwagie N, Power S, Santin S, Hunter SW. Functional reach test, single-leg stance test, and Tinetti Performance-Oriented Mobility Assessment for the prediction of falls in older adults: A systematic review. *Phys Ther*. 2021 Oct 1;101(10):pzab173.
DOI: <https://doi.org/10.1093/ptj/pzab173>

21. Jia X, Wang Z, Huang F, Su C, Du W, Jiang H, Wang H, Wang J, Wang F, Su W, Xiao H. A comparison of the Mini-Mental State Examination (MMSE) with the Montreal Cognitive Assessment (MoCA) for mild cognitive impairment screening in Chinese middle-aged and older population: a cross-sectional study. *BMC Psychiatry*. 2021 Dec;21:1-3.
DOI: <https://doi.org/10.1186/s12888-021-03495-6>

22. Tan TC, Guo YY, Ho DJ, Sanwari NA, Quek PH, Tan RS, Yap FS, Yang M, Yeung MT. Reference values, determinants and regression equation for the timed-up and go test (TUG) in healthy Asian population aged 21 to 85 years. *International Journal of Environmental Research and Public Health*. 2023 May 3;20(9):5712.
DOI: <https://doi.org/10.3390/ijerph20095712>

23. Akin H, Senel A, Taskiran H, Kaya Mutlu E. Do motor-cognitive and motor-motor dual task training effect differently balance performance in older adults? *European Geriatric Medicine*. 2021 Apr;12:371-8.
DOI: <https://doi.org/10.1007/s41999-020-00434-8>

24. Xiong X, Zang J, Zhu C, Wei W, Wang P, Wang J, Gao Q. Effects of proprioceptive neuromuscular facilitation technique on balance function and muscle health in older adults with high fall risk. *Journal of Gerontological Nursing*. 2024 Aug 1;50(8):37-44.
DOI: <https://doi.org/10.3928/00989134-20240702-03>

25. Concha-Cisternas Y, Castro-Piñero J, Leiva-Ordóñez AM, Valdés-Badilla P, Celis-Morales C, Guzmán-Muñoz E. Effects of neuromuscular training on physical performance in older people: A systematic review. *Life*. 2023 Mar 24;13(4):869.
DOI: <https://doi.org/10.3390/life13040869>