

Sadiyah Saleem¹ , Warda Hakeem¹

¹Department of Microbiology, University of Karachi, Karachi, Pakistan

ABSTRACT

Background: The high cost of microbiological culture media is a significant economic burden for diagnostic laboratories. This study aims to evaluate the potential of plant-based extracts as low-cost alternatives to expensive conventional media for growing, isolating, and screening dermatophyte enzyme activity.

Methods: Extracts from indigenous medicinal/edible plants were used to prepare media for growing *Trichophyton mentagrophytes* and *Microsporum gypseum*. Growth and enzyme activity were assessed and compared with conventional Sabouraud's dextrose agar (SDA).

Results: Dermatophyte species showed reproducible growth on various concentrations of general plant extracts (GPx), with optimal results when sugarcane peel extract (SPx) was added as an additional carbon source. Maximum growth of *T. mentagrophytes* (85 mm) and *M. gypseum* (55 mm) occurred on GPx+SPx media within 7 days, compared to 14 days on SDA. Combinations of chicken feather extract (CHFx) or orange lentil extract (OLx) with GPx+SPx also enhanced fungal growth. No lipase, phospholipase, or gelatinase activity was observed on any media. However, gelatin liquefaction occurred when GPx was combined with SPx and OLx as the nitrogen source. Hemolysis was observed with *M. gypseum* at 37°C, whereas neither fungal species demonstrated enzymatic activity in conventional media.

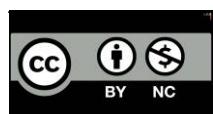
Conclusion: Plant extract-based media offer a viable alternative to commercially available culture media for dermatophyte growth and screening, providing a cost-effective solution for diagnostic laboratories.

Keywords: Clinical laboratory, Culture media, Dermatophytes, Hemolysis, *Microsporum*, *Trichophyton*.

Received: April 19, 2024; **Revised:** September 23, 2024; **Accepted:** December 10, 2024

Corresponding Email: sadiyah.saleem@uok.edu.pk

DOI: <https://doi.org/10.59564/amrj/03.01/008>


INTRODUCTION

Dermatophytes are filamentous fungi classified into three types of genera i.e. *Trichophyton*, *Microsporum*, and *Epidermophyton*, that causes dermatophytosis worldwide¹. Accurate diagnosis of these infections requires a combination of molecular technologies as well as traditional methodologies².

Despite advancements, culture-based techniques for isolating and identifying the causative agents from clinical specimens remain the gold standard in diagnostic settings³⁻⁴, with continued reliance on traditional, expensive, dehydrated commercially available culture media for fungal identification. To date, no new media formulations for dermatophyte growth and enzyme assays

have been introduced. This study highlights the need for innovative, cost-effective diagnostic tools to improve fungal identification.

Culture media provide a growth substrate that meets the nutritional requirements of fungi⁵. Dermatophytes can grow using various carbon sources, including glucose, fructose, mannose, galactose, trehalose, and cellobiose. Certain oligopeptides and amino acids, in addition to nitrogen sources, may also serve as carbon and energy sources for fungal growth. Macronutrients such as phosphorus, sulfur, potassium, and magnesium, as well as trace elements like zinc and iron, are essential for optimal growth⁶. Dermatophytes can be cultivated on both general-

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits others to share, copy, redistribute, and adapt the work for non-commercial purposes, provided the original author(s) and source are credited appropriately. Further details are available on the official AMRJ Open Access policy page: <https://ojs.amrj.net/index.php/1/14>.

purpose and selective-differential culture media. An example of general-purpose medium is Sabouraud's dextrose agar (SDA), whereas dermatophyte test medium (DTM) is a selective/differential medium^{3,7}. Regardless of medium type, rising global costs are a major concern that hinders its availability and purchase. In Pakistan, the current price of Sabouraud's dextrose medium (500 grams) is approximately \$8.46 (23,000 PKR). To prepare the medium, a significant amount (65 grams/liter) is required, making 50 petri plates (90 mm) cost 2,990 PKR (\$10.79) for 50 plates, i.e., ~60 PKR (\$0.22) per plate, exclusive of electricity, gas, and labor charges. This means that a 500-gram bottle of dehydrated medium can be used 7-8 times to prepare 1,000 mL of the medium⁸. It is important to note that dextrose and peptone are the main ingredients of Sabouraud's dextrose medium⁹. Even if these are combined to formulate the medium, the cost per plate increases. Currently, dextrose and peptone are available for \$69.91 (PKR 19,500) and \$12.55 (PKR 3,500), respectively, equivalent to the total cost of SDA. The cost of agar (78.87\$/PKR 22,000) is not included in the estimate, further adding to the overall cost.

Given this scenario, residual plant materials can be effectively processed into nutritionally rich aqueous extracts that may replace traditional media components. While previous studies have primarily assessed the potential of plant extracts for their antifungal properties, emerging evidence from experiments conducted in our laboratory suggests their ability to support fungal growth in culture media compositions¹⁰. The exact mechanisms in this context are yet to be explored; however, certain underlying factors may influence the outcome.

The effectiveness of plant extracts depends on the presence of several bioactive components or phytochemicals such as polyphenols, carotenoids, saponins, dietary fibers, phytosterols, flavonoids, glycosides, and specific polysaccharides¹¹. These compounds exhibit varied affinities for different solvents¹². For example, flavonoids, mostly occurring as glycosides¹³, are highly water-soluble due to sugar moieties and hydroxyl (OH-) groups¹⁴. Water, being a universal and eco-friendly solvent,

is commonly used in extraction procedures because of its non-selectiveness. Compounds such as phenolics, terpenoids, and carbohydrates can be efficiently extracted using water¹². An appropriate extraction method is also crucial for the effective release of bioactive compounds from plant extracts¹⁴. Decoction, a water-based method involving boiling plant materials for a specific duration, facilitates the extraction of alkaloids, tannins, and soluble polysaccharides¹². In addition to the phytochemical composition of extracts, their concentration also influences their activity.

Studies indicate that the efficacy of various water-based plant extracts against pathogenic fungi, particularly dermatophytes, significantly decreases at lower concentrations¹⁵⁻¹⁸, and extracts with the lowest levels of phytochemicals exhibit less anti-dermatophytic activity¹⁸. This suggests that lower concentrations diminish the phytochemical content, potentially weakening their inhibitory effect and altering the properties of the plant extracts. Furthermore, some bioactive compounds may serve as nutrient sources, further affecting their inhibitory properties. Aqueous extracts of medicinal plant components are known to contain substantial concentrations of carbonaceous (54%) and nitrogenous compounds¹⁹.

Dermatophytes, by utilizing these sources, produce various metabolites that integrate into energy-generating pathways, including glycolysis, the tricarboxylic acid (TCA) cycle, and amino acid degradation. Additionally, they possess pH-mediated systems for proteases, lipases, adhesins, and other enzymes essential for initiating and establishing infection in the host by triggering the de-repression of genes coding for these proteins. Therefore, in vitro dermatophyte studies focus on understanding their adaptation strategies within specific niches, nutrient availability, and response to environmental stress². Building on these insights, this study aims to develop an indigenously formulated, low-cost plant extract-based medium for cultivating dermatophytes, with a particular focus on evaluating fungal growth and enzyme activity in species such as *Trichophyton mentagrophytes* and *Microsporum gypseum*. By addressing both the cost and efficacy of these alternative media,

this research seeks to contribute to the development of sustainable and eco-friendly solutions for dermatophyte cultivation in clinical and research settings.

METHODOLOGY

The experimental study design utilizes plant-based extracts at varying concentrations: 20% weight by volume (w/v), 15%, 10%, 5%, and 2.5% volume by volume (v/v). SDA or other conventional formulations were used as reference media/experimental controls. The 20% (w/v) concentration served as the stock extract, from which the other concentrations were prepared. This concentration was chosen to maximize bioactive compound extraction while maintaining an optimal ratio between plant materials and extractants.

Preparation of Stock Generalized Plant Extracts (GPx 20% w/v)

To prepare the GPx, plant components from sources such as bougainvillea branches, coconut, date palm, eucalyptus, neem bark, coconut fibers, eucalyptus leaves, and neem leaves were randomly collected from the campus of the University of Karachi during the clearing of vegetation between varying seasons. Sugarcane peels were obtained from fresh sugarcane vendors, and orange lentils were purchased from local supermarkets at the existing price of 175 PKR/kg. The materials were cut into 0.5 cm segments, rinsed with water, dried, and weighed at 20 g per 100 ml distilled water. Hot water extraction (decoction) was conducted at 100°C for 15-30 minutes, followed by filtration using Whatman No. 1 filter paper²⁰⁻²¹. The filtrates were transferred into glass bottles with rubber caps, sterilized by autoclaving for 15 minutes at 121°C, and then either stored at room temperature in capped plastic containers or placed in the freezer for future use^{20,21}.

Procurement, Growth, and Maintenance of Dermatophyte Cultures

Cultures of *Trichophyton mentagrophytes* and *Microsporum gypseum* (clinical isolates) were obtained from the Department of Microbiology,

University of Karachi. Following identification through standard methods based on cultural and morphological characteristics⁴, the fungal cultures were maintained on SDA, which also served as the reference medium for comparing dermatophyte growth with other extract-based media combinations.

Media Preparation

Sabouraud's Dextrose Agar (SDA)

The medium was prepared according to the manufacturer's instructions (Oxoid). Briefly, glucose, mycological peptone, and agar (40, 10, and 15 grams, respectively) were transferred into an Erlenmeyer flask containing distilled water, and the volume was adjusted to 1 liter. The contents were mixed thoroughly, gently heated while stirring, and brought to a boil. The rest of the procedure, including sterilization, pouring, and storage, was conducted as detailed in the following section.

Extract Media Combinations

Chicken Feather Extract (Chfx 10% w/v)

Chicken feathers, procured from a local poultry farm, were washed thoroughly with mild detergent and water, then shade-dried. After being shredded into small fragments, the feathers were weighed to obtain a concentration of 10 g per 100 ml of distilled water (Table-1). The resulting extract served as the stock, which was then diluted to prepare a 5.0% (v/v) working extract.

Reference and Extract Media Combinations for Enzyme Assays

The media formulation for assessing enzyme and hemolytic activity of dermatophytes used GPx as the base medium, supplemented with sugarcane peel extract, SPx (stock 25% w/v) as the carbon source and orange lentil extract, OLx (stock 20% w/v) as the nitrogen source. SPx and OLx were prepared and stored following the previously described methods. Based on optimizing studies, the working concentrations for GPx, SPx and OLx were determined as 2.5, 5 and 10 % (v/v), respectively. Details of media preparation are mentioned in the table below:

Table-1 Procedure to Prepare Chfx Medium plus Combinations

Media and its combinations	Ingredient (s)	Concentration of stock % (w/v)	Volume (ml) / amount (g)	Final concentration extracts % (v/v)
CHFx	Chicken feather extract	10	500	5
	Distilled water	----	500	----
	Agar	----	15	----
GPx + CHFx	Generalized plant extract	20	125	2.5
	Chicken feather extract	10	500	5
	Distilled water	----	375	----
GPx + CHFx + SPx	Agar	----	15	----
	Generalized plant extract	20	125	2.5
	Chicken feather extract	10	500	5
GPx + CHFx + SPx	Sugar cane peel extract	35	286	10
	Distilled water	----	89	----
	Agar	----	15	----

Table-2 Procedure to Prepare Reference and Test Media

Specification	Composition /liter	Media		
		Reference	GPx + SPx + OLx	Description
		Amount (g) / Volume (ml)		
Lipase activity	Peptone	10	-	The media were autoclaved poured in 90 mm petri dishes and allowed to solidify. A 5mm plug of respective culture was cut with borer and placed in the center of plate. This was followed by the incubation of plates at 37°C plus ambient temperature for a week. Precipitation zone around colonies indicated positive result ²² .
	NaCl	5	50	
	CaCl ₂	0.1	0.1	
	Generalized plant extract (GPx)	-	125	
	Sugarcane peel extract (SPx)	-	200	
	Orange lentil Extract (OLx)	-	500	
	Agar	15	15	
Phospholipase activity	Tween 80	5	10	The media were sterilized by autoclaving and kept for cooling on 50°C. Eggs were disinfected by using 70% alcohol followed by the separation of egg yolks thereby transferring into the sterilized flask having glass beads.
	Distilled water	980	165	
	Dextrose	10	-	
	Peptone	10	-	
	NaCl	57.3	57.3	

CaCl ₂	0.1	0.1	
Generalized plant extract (GPx)	-	125	Flask was vigorously shaken by thorough mixing of the egg yolks, 5% of which was transferred into the molten medium and poured in sterile plates ²² . The plates were inoculated, incubated and results were observed as described above
Sugarcane peel extract (SPx)	-	200	
Orange lentil Extract (OLx)	-	500	
Agar	15	15	
Distilled water	900	175	

Hemolytic Activity

Columbia blood agar base was sterilized by autoclaving, cooled to 50°C, and added 5% (v/v) sheep blood. The contents were thoroughly mixed and poured into sterilized plates. Inoculation and incubation were performed as previously described, with hemolysis around the colony indicating a positive result²². The test medium hemolytic activity used the same ingredients as those for lipase/ phospholipase activity (GPx, SPx, OLx and NaCl), with 5% human blood replacing sheep blood. Media preparation followed the above-described method. Positive and negative controls included β -hemolytic Streptococcus pyogenes and Enterococcus faecalis, respectively.

Gelatin Plate Assay for Protease Activity

Gelatin plate assay for protease activity followed the method of Nwofor et al.²³ with slight modifications. Peptone, beef extract, and NaCl were replaced with Sabouraud's dextrose medium (Oxoid). The medium was prepared per the manufacturer's instructions by adding 1% gelatin. Plates were inoculated and incubated as previously described. Zones of inhibition were measured using mercuric chloride (0.1% w/v). The same ingredients used in the hemolytic activity assessment were employed for the test medium, substituting human blood with 1% gelatin.

Gelatin Liquefaction Test

The reference medium containing peptone, beef extract and gelatin (5, 3, and 120 g/l) was dispensed into test tubes, autoclaved, and cooled upright. Organisms were inoculated by stabbing, and the results were compared with the controls. *Staphylococcus aureus* was used as a positive control, and un-inoculated tubes were used as a negative controls. After incubation at 25°C for one

week, the tubes were refrigerated at 4°C for 10 minutes and examined for gelatin liquefaction²⁴. The same method was applied to prepare the test medium using the ingredients listed to assess hemolysis and gelatinase activity.

Determination of pH, Protein, and Sugar Content of Stock Extracts

The pH of the stock extracts was measured using a pH meter (CCMD.510 WPA, pH conductivity meter, UK). Protein content was assessed using the method described by Pokhrel et al.²⁵. A standard curve was prepared with bovine serum albumin concentrations of 2,000, 1,000, 500, 250, and 125 μ g/ml. Protein values were determined at 590 nm, and a standard curve was applied to calculate the protein content of the test (Table-5). Reducing sugar content was assessed using a dinitrosalicylic acid (DNS) reagent²⁶. Tubes containing 1 ml of the sample were mixed with 3 ml of DNS, then heated for 5 minutes in a boiling water bath and cooled under tap water. Blanks of various extract media served as controls. Absorbance was recorded at 530 nm, and a standard curve with glucose concentrations of 10, 8, 6, 4, and 2 mg/ml was used to calculate the reducing sugar content.

RESULTS

Dermatophytes' Growth on SDA and Combinations of Extract Media Plant-extract media used in our study supported the growth of dermatophytes, *Microsporum gypseum* and *Trichophyton mentagrophytes*. The growth pattern and its extent were comparable to that of the reference medium, SDA. GPx + SPx demonstrated growth within 7 days of incubation, compared to the 14-day incubation period required on SDA. Results also showed that fungal growth was not well supported by CHFx and CHFx + GPx (Table-3, Figure 1B, D, I, and K).

However, the amendment of SPx and CHFx + GPx resulted in reproducible fungal growth (Table-3, Figures 1E and L).

Enzyme Assays

The enzyme producing ability of dermatophyte species was tested by supplementing plant extract media with specific substrates.

Enzyme assays for lipases, phospholipases, gelatinase and hemolysin production were performed at 37°C and ambient temperatures.

Lipase and Phospholipase Production

The lipase and phospholipase activity of *T. mentagrophytes* and *M. gypseum* was not observed in reference or extract media combinations (Table-4).

Table-3 Comparison of Cultural Characteristics and Growth Patterns of on Different Media

Media	Microsporum Gypseum		Grading of Growth	Incubation Period (Days)	Trichophyton Mentagrophytes		Grading of growth	Incubation period (days)
	Cultural characteristics	Reverse			Cultural characteristics	Reverse		
SDA	White, cottony thick growth	Straw	++	14	White, cotton like thick growth	Straw	++	14
GPx	Cotton like white fluffy growth	Brown	++	14	Colourless margins with central cotton like growth	Brown	++	14
GPx + SPx	White fluffy dense cotton like growth	Straw	++++	7	White fluffy cotton like dense growth	Straw	++++	7
CHFx	Straw with occasional white cottony growth	Straw	++	14	White cotton like margins with central white and occasional brown growth	Straw with brown spots	+++	14
GPx + CHFx	Very light brown with occasional white growth	Brown	++	14	--do--	Brown	++	14
GPx + CHFx + SPx	White fluffy cotton like growth	Brown	+++	14	White thin cotton like growth	Brown	+++	14

Hemolytic and Gelatinase Assay

T. mentagrophytes and *M. gypseum* did not produce any hemolysis on reference media (Table 4). However, *M. gypseum* exhibited hemolysis on extract media combinations when incubated at 37°C (Figure-1S). In contrast, no hemolysis was observed for *T. mentagrophytes* in extract media combinations at varying incubation temperatures (Table-4). Protease (gelatinase) enzyme activity was not produced by dermatophyte species on any reference or extract media combinations during plate assays. Gelatin liquefaction was not observed on conventional medium. However, liquefaction was observed at 37°C with GPx in combination with SPx and OLx, indicating gelatinase activity of *T. mentagrophytes* and *M.*

gypseum (Table-4, Figure 1P, and Q). The culture of *S. aureus* served as a positive control during the enzyme assay (Figure-1O).

pH, Protein and Sugar Content of Stock Extracts

The pH of stock extracts was within the acidic limit: 5.11-6.50. The protein content in GPx was found to be greater ($492 \pm 0.75 \mu\text{g/ml}$) followed by CHFx ($317 \pm 2 \mu\text{g/ml}$), whereas minimum protein content was present in OLx ($50 \pm 0.03 \mu\text{g/ml}$) and negligible in SPx. However, it had the highest concentration of reducing sugar, $6.23 \pm 0.14 \text{ mg/ml}$, followed by GPx and OLx $1.525 \pm 0.2, 0.53 \pm 0.02 \text{ mg/ml}$, respectively (Table-5).

Table-4 Determination of pH, Protein and Sugar Content of Stock Extracts

Parameter /activity	Dermatophytes							
	Trichophyton mentagrophytes				Microsporum gypseum			
Media	Reference		GPx+SPx+OLx		Reference		GPx+SPx+OLx	
Temperature	Ambient	37°C	Ambient	37°C	Ambient	37°C	Ambient	37°C
Lipase assay	-	-	-	-	-	-	-	-
Phospholipase assay	-	-	-	-	-	-	-	-
Hemolysis (β)	-	-	-	-	-	-	-	+
Gelatinase assay	-	-	-	-	-	-	-	-
Gelatin liquefaction (tube method)	-	+	-	-	-	-	-	+

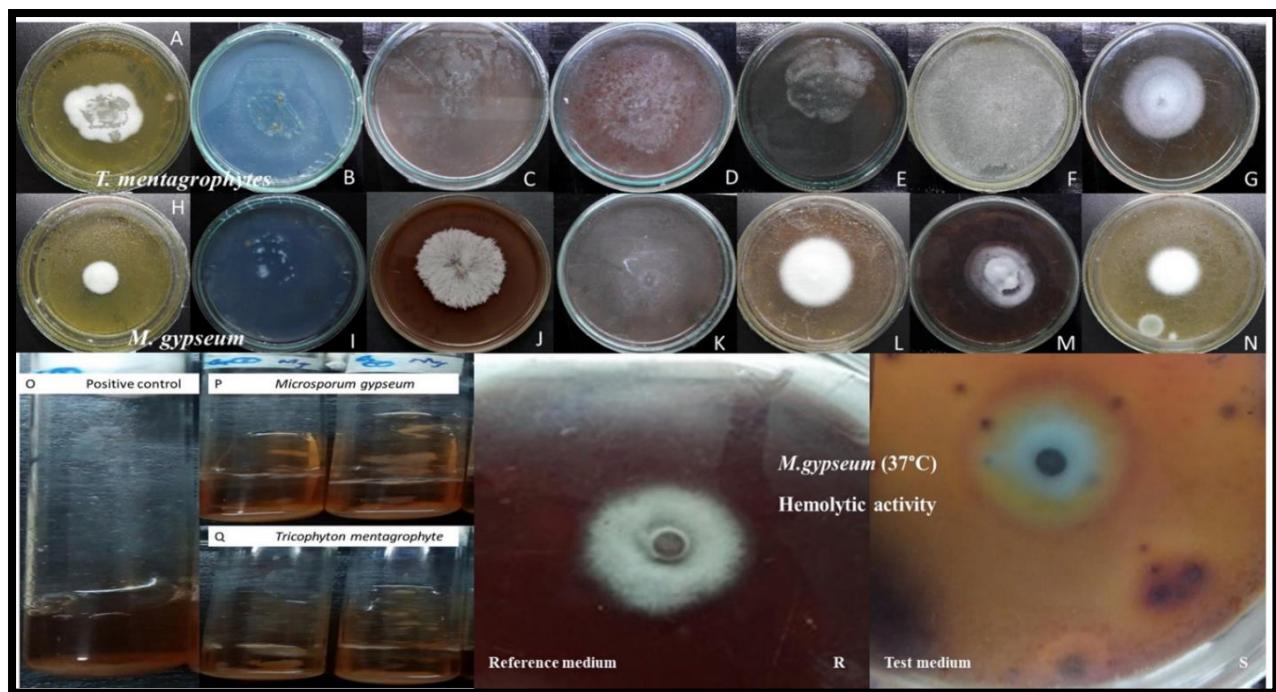


Figure 1-A, B, C, D, E, F, G Growth of Trichophyton mentagrophytes on SDA, CHFx, GPx, GPx+CHFx, GPx+CHFx+SPx, GPx+SPx, GPx+SPx+OLx

H, I, J, K, L, M, N Growth of Microsporum gypseum on SDA, CHFx, GPx, GPx+CHFx, GPx+CHFx+SPx, GPx+SPx, GPx+SPx+OLx
 O, P, Q Gelatin liquefaction test; positive control (S.aureus), liquified gelatin by M. gypseum and T. mentagrophytes
 R, S Haemolytic activity; M. gypseum at 37°C (negative on reference and positive on test medium)

Table-5 Determination of Ph, Protein and Sugar Content of Stock Extracts

S.No	Name of the extract	Concentration	pH	Protein ($\mu\text{g/ml}$)	Sugar concentration (mg/ml)
1.	GPx	20 % (w/v)	5.11 \pm 0.01	492.0 \pm 0.75	1.525 \pm 0.2
2.	CHFx	10 % (v/v)	6.50 \pm 0.01	317.0 \pm 2	Negligible
3.	SPx	25% (v/v)	5.59 \pm 0.03	Negligible	6.23 \pm 0.14
4.	OLx	20 % (w/v)	6.23 \pm 0.03	50.0 \pm 0.03	0.53 \pm 0.02


DISCUSSION

The results of this study demonstrate the potential of plant-extract media as viable, low-cost alternatives to conventional media for dermatophyte growth and enzyme assays. The formulation of media using plant-based extracts like GPx, SPx, and OLx successfully supported the growth of *Microsporum gypseum* and *Trichophyton mentagrophytes*, showing comparable fungal growth patterns to the traditional SDA. These findings suggest that plant-derived media, despite having fewer added nutrients, can provide sufficient resources to promote fungal growth. This aligns with previous studies, which have shown that plant extracts, such as those from neem, eucalyptus, and other botanicals, contain bioactive compounds, including polysaccharides, amino acids, and polyphenols, that support fungal development¹².

The growth of dermatophytes in GPx was particularly notable because it provided essential bioactive compounds, such as carbohydrates, polysaccharides, and proteins, which allowed for robust fungal growth. The combination of GPx with SPx provided additional carbon sources, particularly sucrose from sugarcane peels, which facilitated better growth of the dermatophyte species in the media. These findings support the hypothesis that plant-extract media could balance the C: N ratio necessary for fungal development, despite having lower concentrations of sugars compared to conventional media like SDA⁹. It is also important to note that, while SPx had a significantly lower concentration of reducing sugars (2.49 ± 0.27 mg/ml), dermatophytes still adapted and utilized the available nutrients efficiently, further indicating their metabolic flexibility in nutrient-limited environments. The inclusion of CHFx in media formulations aimed to introduce keratin as a nitrogen source. However, as noted, the lack of fungal growth in CHFx-based media may be attributed to the poor solubility of keratin and the difficulty in extracting its bioactive components. This observation highlights the limitations of the decoction method for keratin extraction, which may not be effective in breaking down the complex structure of keratin. Previous studies²⁸⁻²⁹ have indicated that specialized extraction techniques such as oxidation, study, which could be due to factors such as substrate specificity or the nature of the medium.

reduction, or hydrolysis are needed to release the smaller peptides and amino acids from keratin, which could otherwise serve as a nitrogen source for dermatophytes. Future work could optimize extraction methods to improve the efficacy of CHFx in fungal growth.

Interestingly, combining CHFx with GPx + SPx demonstrated improved growth, which might be explained by the presence of sucrose in the sugarcane extract. The sucrose likely hydrolyzed into glucose and fructose during the extraction process, providing an additional carbon source. This combination likely facilitated better growth than CHFx alone, showing that nutrient availability, especially carbon sources, plays a crucial role in fungal development. The presence of glucose, though a non-reducing disaccharide, could trigger metabolic pathways in dermatophytes, leading to increased enzyme production, as seen in other studies³⁰. Our results also revealed that the pH of the media was slightly acidic (pH 5.5-6.9), which is within the optimal range for dermatophyte growth. Dermatophytes thrive in slightly acidic environments, which also enhances the activity of enzymes such as phosphatases, lipases, and proteases, critical for tissue penetration and host infection². The pH of our plant-extract media likely contributed to supporting enzymatic activity, as evidenced by the gelatinase activity observed with dermatophyte growth on 1% gelatin media. The acidity of the extracts may have triggered specific metabolic pathways in the fungi, helping them adapt to nutrient limitations and promote enzyme production. Regarding the enzyme assays, the lipase activity was not detected in the dermatophytes grown in either plant-extract or reference media, aligning with some studies that report variable lipase activity in dermatophytes³⁶. This lack of lipase production may suggest that these particular species of dermatophytes do not rely on lipases during initial infection stages, or that the environmental conditions in our study were not conducive to lipase production. Similarly, despite phospholipase activity being important in the early stages of infection¹, no significant phospholipase production was observed in our study. These findings suggest that enzyme production in dermatophytes is influenced by a variety of

factors, including nutrient availability, species-specific metabolic pathways, and the presence of specific substrates. The gelatinase (protease) assay, however, provided promising results, with dermatophytes being able to liquefy gelatin in the media at 37°C. This aligns with previous research suggesting that gelatinase production is correlated with dermatophyte growth, particularly under optimal nutrient conditions²⁴. It is likely that the 1% gelatin in the media was sufficient to induce protease activity, supporting the idea that dermatophytes produce proteases for host tissue degradation. However, further investigations are needed to explore how other factors, such as carbon source availability, affect protease

CONCLUSION

Plant-based extracts offer a viable, low-cost alternative to traditional media for the cultivation and study of dermatophytes. The GPx + SPx + OLx formulation provided a suitable environment for fungal growth and enzyme production, demonstrating the potential of plant-extract media as sustainable substitutes in dermatophyte isolation and diagnostics. While there are limitations related to extract variability and the need for more refined extraction methods, this study lays the foundation for future research to optimize plant-extract media for industrial-scale applications and fungal pathogen studies.

Acknowledgments

None.

Author Contributions

Sadia Saleem contributed to the conceptualization, methodology, data collection, analysis, and manuscript writing. **Warda Hakeem** was responsible for the literature review, data interpretation, manuscript editing, and final approval of the manuscript.

Ethical Approval

This study received approval from the Institutional Ethical Review Committee (ASRB/File No. 01027/Sc.) of University of Karachi.

Conflict of Interest

None.

Grant Support and Funding Disclosure

None.

production in dermatophytes. Hemolytic activity was observed in *M. gypseum* but not in *T. mentagrophytes*. Hemolysin production by dermatophytes is considered a survival strategy, as it helps release iron from red blood cells, which is critical for fungal growth¹. In our study, *M. gypseum* showed hemolytic activity under nutrient stress, particularly under low iron conditions. This result suggests that *M. gypseum* may rely on hemolysin production as part of its virulence strategy during infections, a finding that warrants further exploration to understand the pathogen's role in disease progression.

REFERENCES

1. Z, Aliyari H. In Vitro Enzymatic Virulence Factors of Dermatophytes Species Isolated From Clinical Specimens. *Journal of Inflammatory Diseases*. 2022 Mar 10;26(1):35-42.
2. Martinez-Rossi NM, Peres NT, Bitencourt TA, Martins MP, Rossi A. State-of-the-art dermatophyte infections: epidemiology aspects, pathophysiology, and resistance mechanisms. *Journal of Fungi*. 2021 Aug 3;7(8):629. DOI: <https://doi.org/10.3390/jof7080629>
3. Ahmad MR, Javed I, Mushtaq S, Hafeez R, Cheema KH. Evaluation of dermatophyte test medium and sabouraud dextrose agar for isolation of dermatophyte species. *Biomedica*. 2020; 36 (4): 362-6. DOI: <https://doi.org/10.51441/BioMedica/5-80>.
4. Moskaluk AE, VandeWoude S. Current topics in dermatophyte classification and clinical diagnosis. *Pathogens*. 2022 Aug 23;11(9):957. DOI: <https://doi.org/110.3390/pathogens11090957>
5. Gautam AK, Verma RK, Avasthi S, Sushma, Bohra Y, Devadatha B, Nirajan M, Suwannarach N. Current insight into traditional and modern methods in fungal diversity estimates. *Journal of Fungi*. 2022 Feb 24;8(3):226. DOI: <https://doi.org/10.3390/jof8030226>
6. Dubljanin E, Zunic J, Vujcic I, Colovic Calovski I, Sipetic Grujicic S, Mijatovic S, Dzamic A. Host-Pathogen Interaction and Resistance Mechanisms in Dermatophytes. *Pathogens*. 2024 Aug 4;13(8):657. DOI: <https://doi.org/10.3390/pathogens13080657>
7. Acharya T, Hare J. Sabouraud Agar and Other Fungal Growth Media. *Laboratory Protocols in Fungal Biology: Current Methods in Fungal Biology*. 2022 Feb 3:69. DOI: https://doi.org/10.1007/978-3-030-83749-5_2
8. Atlas, R.M. 2010. *Handbook of Microbiological Media* (4th ed). CRC Press. DOI: <https://doi.org/10.1201/EBK1439804063>
9. Arip AG, Wulandari A. The use of coconut water (*Cocos nucifera* L.) as an alternative media to substitute Sabouraud Dextrose Agar (SDA) for the growth of *Aspergillus flavus*. *IOP Conf Ser Earth Environ Sci*. 2021 Jul 1;819(1):012061. DOI: <https://doi.org/10.1088/1755-1315/819/1/012061>

10. Saleem, S., T.A. Ali and S. Ejaz. 2025. Growth media from plant extracts for industrially important fungus; *Aspergillus niger*. *Pak. J. Bot.*, 57(3):
DOI: [http://dx.doi.org/10.30848/PJB2025-3\(2\)](http://dx.doi.org/10.30848/PJB2025-3(2)).
11. Rashmi HB, Negi PS. Chemistry of plant extracts. In *Plant Extracts: Applications in the Food Industry* 2022 Jan 1: 39-73. Academic Press.
DOI: <https://doi.org/10.1016/B978-0-12-822475-5.00004-1>
12. Kumar A, P N, Kumar M, Jose A, Tomer V, Oz E, Proestos C, Zeng M, Elobaid T, K S, Oz F. Major phytochemicals: recent advances in health benefits and extraction method. *Molecules*. 2023 Jan 16;28(2):887.
DOI: <https://doi.org/10.3390/molecules28020887>
13. Dias MC, Pinto DCGA, Silva AMS. Plant Flavonoids: Chemical Characteristics and Biological Activity. *Molecules*. 2021 Sep 4;26(17):5377.
DOI: <https://doi.org/10.3390/molecules26175377>
14. Plaskova A, Mlcek J. New insights of the application of water or ethanol-water plant extract rich in active compounds in food. *Frontiers in Nutrition*. 2023 Mar 28;10:1118761.
DOI: <https://doi.org/10.3389/fnut.2023.1118761>
15. Tiple RH, Jamane SR, Khobragade DS. Antifungal Activity of Neem Leaf Extract With Eucalyptus citriodora Oil and Cymbopogon martini Oil Against *Tinea Capitis*: An In-Vitro Evaluation. *Cureus*. 2024 May;16(5).
DOI: <https://doi.org/10.7759/cureus.59671>
16. Ahmed M, Marrez DA, Mohamed Abdelmoeen N, Abdelmoneem Mahmoud E, Ali MA, Decsi K, Tóth Z. Studying the antioxidant and the antimicrobial activities of leaf successive extracts compared to the green-chemically synthesized silver nanoparticles and the crude aqueous extract from *Azadirachta indica*. *Processes*. 2023 May 27;11(6):1644.
DOI: <https://doi.org/10.3390/pr11061644>
17. Mohammed FR, Abboud ZH, Hussein KA. Effects of some plants extracts in growth of some dermatophytes. *Journal of Kerbala University*. 2023 Jul 24;20(1).
18. Chaiwaree S, Pongpaibul Y, Thammasit P. Anti-dermatophyte activity of the aqueous extracts of Thai medicinal plants. *Brazilian Journal of Biology*. 2022 Jan 17;82:e254291.
19. Andersa KN, Tamiru M, Teka TA, Ali IM, Chane KT, Regasa TK, Ahmed EH. Proximate composition, some phytochemical constituents, potential uses, and safety of neem leaf flour: A review. *Food Science & Nutrition*. 2024 Jul 17.
DOI: <https://doi.org/10.1002/fsn3.4336>
20. Corrêa AL, Oliveira AP, Ruppelt BM, de Araújo ER, Santos MG, Caldas GR, Muylaert FF, Amendoeira FC, Ferraris FK, de Souza CM, Fuly AL. Protective effect of *Myrsine parvifolia* plant extract against the inflammatory process induced by *Bothrops jararaca* snake venom. *Toxicon*. 2019 Jan 1;157:66-76.
DOI: <https://doi.org/10.1016/j.toxicon.2018.11.289>
21. Félix-Silva J, Gomes JA, Xavier-Santos JB, Passos JG, Silva-Junior AA, Tambourgi DV, Fernandes-Pedroso MF. Inhibition of local effects induced by *Bothrops erythromelas* snake venom: assessment of the effectiveness of Brazilian polyvalent bothropic antivenom and aqueous leaf extract of *Jatropha gossypiifolia*. *Toxicon*. 2017 Jan 1;125:74- 83.
DOI: <https://doi.org/10.1016/j.toxicon.2016.11.260>
22. Gnat S, Łagowski D, Nowakiewicz A, Osińska M, Kopiński Ł. Population differentiation, antifungal susceptibility, and host range of *Trichophyton* mentagrophytes isolates causing recalcitrant infections in humans and animals. *European Journal of Clinical Microbiology & Infectious Diseases*. 2020 Nov;39:2099-113.
DOI: <https://doi.org/10.1007/s10096-020-03952-2>
23. Nwofor CN, Onyenwe NE, Osuoha CB. Pathogenecity and enzyme screening of some selected non-dermatophytic molds. *Access Microbiology*. 2024 Apr 16:000683-v4.
DOI: <https://doi.org/10.1099/acmi.0.000683.v5>
24. Bonci MM, Makita MT, de Almeida Mendes C, de Abreu DP, Ribeiro LV, Duarte GA, de Campos SG, Paula CR, de Assis Baroni F. In vitro virulence evaluation of clinical and environmental isolates of dermatophyte fungi. *Research, Society and Development*. 2021 May 28;10(6):e21110615699.
DOI: <https://doi.org/10.33448/rsd-v10i6.15699>
25. Pokhrel P, Jha S, Giri B. Selection of appropriate protein assay method for a paper microfluidics platform. *Practical laboratory medicine*. 2020 Aug 1;21:e00166.
DOI: <https://doi.org/10.1016/j.plabm.2020.e00166>
26. Salem SA, Alhousini EM, Al-Amgad Z, Mahmoud MA. Efficiency of spinetoram on biological, biochemical, and histological parameters in the invasive fall armyworm *Spodoptera frugiperda* (Lepidoptera: Noctuidae) in Egypt. *Journal of Plant Diseases and Protection*. 2024 Apr;131(2):489-99.
DOI: <https://doi.org/10.1007/s41348-023-00835-4>
27. Boutafda A, Hafidi M, Ouhdouch Y, Pinelli E, Jemo M, El Fels L. Fungal strain as biological tool to remove genotoxicity effect of phenolic compounds from olive mill wastewater. *Sustainability*. 2023 Apr 12;15(8):6510.
DOI: <https://doi.org/10.3390/su15086510>
28. Perťa-Crişan S, Ursachi CS, Gavrilaş S, Oancea F, Munteanu FD. Closing the loop with keratin-rich fibrous materials. *Polymers*. 2021 Jun 7;13(11):1896.
DOI: <https://doi.org/10.3390/polym13111896>
29. Pourjavaheri F, Pour SO, Jones OA, Smooker PM, Brkliča R, Sherkat F, Blanch EW, Gupta A, Shanks RA. Extraction of keratin from waste chicken feathers using sodium sulfide and L-cysteine. *Process Biochemistry*. 2019 Jul 1;82:205-14.
DOI: <https://doi.org/10.1016/j.procbio.2019.04.010>
30. Ciesielska A, Kawa A, Kanarek K, Soboń A, Szewczyk R. Metabolomic analysis of *Trichophyton rubrum* and *Microsporum canis* during keratin degradation. *Scientific reports*. 2021 Feb 17;11(1):3959.
DOI: <https://doi.org/10.1038/s41598-021-83632-z>
31. El-Desouky TA. Evaluation of effectiveness aqueous extract for some leaves of wild edible plants in Egypt as anti-fungal and anti-toxigenic. *Heliyon*. 2021 Feb 1;7(2).
DOI: <https://doi.org/10.1016/j.heliyon.2021.e06209>
32. Kursa W, Jamiołkowska A, Wyrostek J, Kowalski R. Antifungal effect of plant extracts on the growth of the cereal pathogen *Fusarium* spp.—an in vitro study. *Agronomy*. 2022 Dec 16;12(12):3204.
DOI: <https://doi.org/10.3390/agronomy12123204>
33. Taha M, Tartor YH, Abdul-Haq SI, El-Mati MF. Characterization and antidermatophyte activity of henna extracts: a promising therapy for humans and animals dermatophytoses. *Current Microbiology*. 2022 Feb;79(2):59.
DOI: <https://doi.org/10.1007/s00284-021-02686-4>

34. Yanyun C, Ying T, Wei K, Hua F, Haijun Z, Ping Z, Shunming X, Jian W. Preliminary Study on Antifungal Mechanism of Aqueous Extract of Cnidium monnieri Against Trichophyton rubrum. *Front Microbiol.* 2021 Aug 19;12:707174.
DOI: <https://doi.org/10.3389/fmicb.2021.707174>
35. Noites A, Borges I, Araújo B, da Silva JCGE, de Oliveira NM, Machado J, Pinto E. Antimicrobial Activity of Some Medicinal Herbs to the Treatment of Cutaneous and Mucocutaneous Infections: Preliminary Research. *Microorganisms.* 2023; 11(2):272.
DOI: <https://doi.org/10.3390/microorganisms11020272>
36. Aneke CI, Rihimi W, Hubka V, Otranto D, Cafarchia C. Virulence and antifungal susceptibility of *Microsporum canis* strains from animals and humans. *Antibiotics.* 2021 Mar 12;10(3):296.
DOI: <https://doi.org/10.3390/antibiotics10030296>
37. Gnat S, Łagowski D, Nowakiewicz A. Major challenges and perspectives in the diagnostics and treatment of dermatophyte infections. *Journal of applied microbiology.* 2020 Aug 1;129(2):212-32.
DOI: <https://doi.org/10.1111/jam.14611>
38. Sipiczki G, Micevic SS, Kohari-Farkas C, Nagy ES, Nguyen QD, Gere A, Bujna E. Effects of Olive Oil and Tween 80 on Production of Lipase by *Yarrowia* Yeast Strains. *Processes.* 2024 Jun;12(6):1206.
DOI: <https://doi.org/10.3390/pr12061206>
39. Martins MP, Rossi A, Sanches PR, Bortolossi JC, Martinez-Rossi NM. Comprehensive analysis of the dermatophyte *Trichophyton rubrum* transcriptional profile reveals dynamic metabolic modulation [Internet]. *Biochemical Journal.* 2020 ; 477(5): 873-885.
DOI: <https://doi.org/10.1042/BCJ20190868>